Identification and characterization of two SERPINC1 mutations causing congenital antithrombin deficiency

Amiral J, Seghatchian J. Revisiting antithrombin in health and disease, congenital deficiencies and genetic variants, and laboratory studies on alpha and beta forms. Transfus Apher Sci. 2018;57:291–7.

Article  Google Scholar 

Neubauer K, Zieger B. Endothelial cells and coagulation. Cell Tissue Res. 2022;387:391–8.

Article  Google Scholar 

Liu S, Luo S, Yang L, Wang M, Jin Y, Li X, Xu Q. Phenotypic and genotypic analysis of a hereditary antithrombin deficiency pedigree due to a novel SERPINC1 mutation (p.Met281Thr). Hamostaseologie. 2020;40:687–90.

Article  Google Scholar 

Hong J, Xing J, Li P, Liu M, Zhu J, Li L, Li X, Dong J. Generation of a human iPSC line ZZUNEUi014-A from a patient with antithrombin deficiency caused by mutation in SERPINC1 gene. Stem Cell Res. 2021;59: 102646.

Article  Google Scholar 

Reda S, Muller J, Pavlova A, Pezeshkpoor B, Oldenburg J, Potzsch B, Ruhl H. Functional characterization of antithrombin mutations by monitoring of thrombin inhibition kinetics. Int J Mol Sci. 2021;22(4):2119.

Article  Google Scholar 

Mir N, D’Amico A, Dasher J, Tolwani A, Valentine V. Understanding the andromeda strain - the role of cytokine release, coagulopathy and antithrombin III in SARS-CoV2 critical illness. Blood Rev. 2021;45: 100731.

Article  Google Scholar 

Funayama T, Tsukanishi T, Noguchi H, Tatsumura M, Yamazaki M. Cardiac arrest due to pulmonary embolism after posterior spinal fusion in a patient with acute paraplegia caused by a metastatic spinal tumor associated with Congenital Antithrombin III deficiency. Cureus. 2022;14: e22618.

Google Scholar 

Miyashita H, Tobita K, Morishita E, Saito S. Ilio-femoral venous thrombosis with hereditary antithrombin deficiency: a case report of rare thrombotic disease and successful treatment with catheter directed thrombolysis. Eur Heart J Case Rep. 2021;5:ytaa531.

Article  Google Scholar 

Gindele R, Olah Z, Ilonczai P, Speker M, Udvari A, Selmeczi A, Pfliegler G, Marjan E, Kovacs B, Boda Z, et al. Founder effect is responsible for the p.Leu131Phe heparin-binding-site antithrombin mutation common in Hungary: phenotype analysis in a large cohort. J Thromb Haemost 2016;14:704–15.

Article  Google Scholar 

Aslan D. Novel Mutation p.Asp374Val of SERPINC1 in a Turkish family with inherited Antithrombin deficiency. Turk J Haematol. 2021;38:161–3.

Article  Google Scholar 

Gemmati D, Longo G, Franchini E, Araujo Silva J, Gallo I, Lunghi B, Moratelli S, Maestri I, Serino ML, Tisato V. Cis-Segregation of c.1171C>T Stop Codon (p.R391*) in SERPINC1 Gene and c.1691G>A transition (p.R506Q) in F5 Gene and Selected GWAS Multilocus approach in inherited Thrombophilia. Genes (Basel). 2021;12(6):934.

Article  Google Scholar 

Bravo-Perez C, de la Morena-Barrio ME, Palomo A, Entrena L, de la Morena-Barrio B, Padilla J, Minano A, Navarro E, Cifuentes R, Corral J, Vicente V. Genotype-phenotype gradient of SERPINC1 variants in a single family reveals a severe compound antithrombin deficiency in a dead embryo. Br J Haematol. 2020;191:e32–5.

Article  Google Scholar 

Jian X, Yang D, Wang L, Wang H. Downregulation of microRNA-200c-3p alleviates the aggravation of venous thromboembolism by targeting serpin family C member 1. Bioengineered. 2021;12:11156–68.

Article  Google Scholar 

Lu Z, Wang F, Liang M. SerpinC1/Antithrombin III in kidney-related diseases. Clin Sci (Lond). 2017;131:823–31.

Article  Google Scholar 

Martinez-Martinez I, Navarro-Fernandez J, Aguila S, Minano A, Bohdan N, De La Morena-Barrio ME, Ordonez A, Martinez C, Vicente V, Corral J. The infective polymerization of conformationally unstable antithrombin mutants may play a role in the clinical severity of antithrombin deficiency. Mol Med. 2012;18:762–70.

Article  Google Scholar 

Mulder R, Meijer K, Lukens MV. Genetic testing of hereditary antithrombin deficiency in a large US pedigree using saliva samples. Int J Lab Hematol. 2021;43:e101–3.

Article  Google Scholar 

de la Morena-Barrio ME, Lopez-Galvez R, Martinez-Martinez I, Asenjo S, Sevivas TS, Lopez MF, Wypasek E, Entrena L, Vicente V, Corral J. Defects of splicing in antithrombin deficiency. Res Pract Thromb Haemost. 2017;1:216–22.

Article  Google Scholar 

Nowak W, Trelinski J, Wypasek E, de la Morena-Barrio B, de la Morena-Barrio ME, Corral J. New SERPINC1 gene mutations in patients with antithrombin deficiency: antithrombin Lodz I, II, III, and IV. Pol Arch Intern Med. 2022;132(1):16158.

Google Scholar 

Miyata T, Sato Y, Ishikawa J, Okada H, Takeshita S, Sakata T, Kokame K, Kimura R, Honda S, Kawasaki T, et al. Prevalence of genetic mutations in protein S, protein C and antithrombin genes in Japanese patients with deep vein thrombosis. Thromb Res. 2009;124:14–8.

Article  Google Scholar 

Senst B, Tadi P, Goyal A, Jan A: Hypercoagulability. In StatPearls. Treasure Island (FL); 2022

Bauer KA, Nguyen-Cao TM, Spears JB. Issues in the diagnosis and management of hereditary Antithrombin deficiency. Ann Pharmacother. 2016;50:758–67.

Article  Google Scholar 

Navarro-Fernandez J, Eugenia de la Morena-Barrio M, Martinez-Alonso E, Dybedal I, Toderici M, Bohdan N, Minano A, Heimdal K, Abildgaard U, Martinez-Menarguez JA, et al: Biochemical and cellular consequences of the antithrombin p.Met1? mutation identified in a severe thrombophilic family. Oncotarget 2018, 9:33202–33214.

Wojcik M, de la Morena-Barrio ME, Michalik J, Wypasek E, Kopytek M, Corral J, Undas A. A series of 10 Polish patients with thromboembolic events and antithrombin deficiency: two new c.1154–1 G>C and c.1219–534 A>G SERPINC1 gene splicing mutations. Blood Coagul Fibrinolysis. 2019;30:193–8.

Article  Google Scholar 

Fiskvik H, Jacobsen AF, Iversen N, Henriksson CE, Jacobsen EM. Treatment of Homozygous type II Antithrombin heparin-binding site deficiency in pregnancy. Case Rep Obstet Gynecol. 2021;2021:4393821.

Google Scholar 

Muller-Knapp M, Classen CF, Knofler R, Spang C, Hauenstein C, Heinrich T, Gabriel FLP, Dabritz J, Reuter DA, Ehler J. Coexistence of antithrombin deficiency and suspected inferior vena cava atresia in an adolescent and his mother - case report and clinical implications. Thromb J. 2021;19:105.

Article  Google Scholar 

Corral J, de la Morena-Barrio ME, Vicente V. The genetics of antithrombin. Thromb Res. 2018;169:23–9.

Article  Google Scholar 

Lu Y, Villoutreix BO, Biswas I, Ding Q, Wang X, Rezaie AR. Thr90Ser mutation in Antithrombin is associated with recurrent Thrombosis in a Heterozygous carrier. Thromb Haemost. 2020;120:1045–55.

Article  Google Scholar 

Deshpande R, Kulkarni B, Ghosh K, Shetty S. A common missense variant in exon 5 of antithrombin gene (SERPINC1) in Indian patients with thrombosis. Thromb Res. 2016;143:1–2.

Article  Google Scholar 

Luxembourg B, Delev D, Geisen C, Spannagl M, Krause M, Miesbach W, Heller C, Bergmann F, Schmeink U, Grossmann R, et al. Molecular basis of antithrombin deficiency. Thromb Haemost. 2011;105:635–46.

Article  Google Scholar 

Gyulkhandanyan A, Rezaie AR, Roumenina L, Lagarde N, Fremeaux-Bacchi V, Miteva MA, Villoutreix BO. Analysis of protein missense alterations by combining sequence- and structure-based methods. Mol Genet Genomic Med. 2020;8: e1166.

Article  Google Scholar 

Tamura S, Hashimoto E, Suzuki N, Kakihara M, Odaira K, Hattori Y, Tokoro M, Suzuki S, Takagi A, Katsumi A, et al. Molecular basis of SERPINC1 mutations in Japanese patients with antithrombin deficiency. Thromb Res. 2019;178:159–70.

Article  Google Scholar 

Alhenc-Gelas M, Plu-Bureau G, Hugon-Rodin J, Picard V, Horellou MH. Thrombophilia GsgoG: Thrombotic risk according to SERPINC1 genotype in a large cohort of subjects with antithrombin inherited deficiency. Thromb Haemost. 2017;117:1040–51.

Article  Google Scholar 

Zeng W, Hu B, Tang L, You YY, Toderici M, de la Morena-Barrio ME, Corral J, Hu Y. Recurrent mutations in a SERPINC1 hotspot associate with venous thrombosis without apparent antithrombin deficiency. Oncotarget. 2017;8:84417–25.

Article  Google Scholar 

Bravo-Perez C, Vicente V, Corral J. Management of antithrombin deficiency: an update for clinicians. Expert Rev Hematol. 2019;12:397–405.

Article  Google Scholar 

de la Morena-Barrio B, Orlando C, Sanchis-Juan A, Garcia JL, Padilla J, de la Morena-Barrio ME, Puruunen M, Stouffs K, Cifuentes R, Borras N, et al. Molecular dissection of structural variations involved in Antithrombin deficiency. J Mol Diagn. 2022;24:462–75.

Article  Google Scholar 

de la Morena-Barrio ME, Martinez-Martinez I, de Cos C, Wypasek E, Roldan V, Undas A, van Scherpenzeel M, Lefeber DJ, Toderici M, Sevivas T, et al. Hypoglycosylation is a common finding in antithrombin deficiency in the absence of a SERPINC1 gene defect. J Thromb Haemost. 2016;14:1549–60.

Article  Google Scholar 

Aguila S, Noto R, Luengo-Gil G, Espin S, Bohdan N, de la Morena-Barrio ME, Penas J, Rodenas MC, Vicente V, Corral J, et al. N-Glycosylation as a tool to study antithrombin secretion, conformation, and function. Int J Mol Sci. 2021;22(2):516.

Article  Google Scholar 

Johnson DJ, Langdown J, Huntington JA. Molecular basis of factor IXa recognition by heparin-activated antithrombin revealed by a 1.7-A structure of the ternary complex. Proc Natl Acad Sci U S A 2010;107:645–50.

Article  Google Scholar 

Elmissbah TE, Iderous ME, Al-Qahtani FM, Elaskary A, Dahlawi H: Assessment of Antithrombin III and Protein C in Saudi Myocardial Infarction Patients. Clin Lab 2021, 67.

Bereczky Z, Gindele R, Fiatal S, Speker M, Miklos T, Balogh L, Mezei Z, Szabo Z, Adany R. Age and origin of the dounder Antithrombin Budapest 3 (p.Leu131Phe) mutation; its high prevalence in the Roma population and its association with cardiovascular diseases. Front Cardiovasc Med. 2020;7:617711.

Article  Google Scholar 

Muszbek L, Bereczky Z, Kovacs B, Komaromi I. Antithrombin deficiency and its laboratory diagnosis. Clin Chem Lab Med. 2010;48(Suppl 1):S67-78.

Google Scholar 

Plessa E, Chu LP, Chan SHS, Thomas OL, Cassaignau AME, Waudby CA, Christodoulou J, Cabrita LD. Nascent chains can form co-translational folding intermediates that promote post-translational folding outcomes in a disease-causing protein. Nat Commun. 2021;12:6447.

Article  Google Scholar 

Kjaergaard AD, Larsen OH, Hvas AM, Nissen PH. SERPINC1 variants causing hereditary antithrombin deficiency in a Danish population. Thromb Res. 2019;175:68–75.

Article  Google Scholar 

Orlando C, de la Morena-Barrio B, Pareyn I, Vanhoorelbeke K, Martinez-Martinez I, Vicente V, Corral J, Jochmans K, de la Morena-Barrio ME. Antithrombin p.Thr147Ala: the first founder mutation in people of African origin responsible for inherited Antithrombin deficiency. Thromb Haemost. 2021;121:182–91.

Article  Google Scholar 

Dinarvand P, Yang L, Villoutreix BO, Rezaie AR. Expression and functional characterization of two natural heparin-binding site variants of antithrombin. J Thromb Haemost. 2018;16:330–41.

Article  Google Scholar 

Sekiya A, Taniguchi F, Yamaguchi D, Kamijima S, Kaneko S, Katsu S, Hanamura M, Takata M, Nakano H, Asakura H, et al. Causative genetic mutations for antithrombin deficiency and their clinical background among Japanese patients. Int J Hematol. 2017;105:287–94.

Article  Google Scholar 

Munoz EM, Linhardt RJ. Heparin-binding domains in vascular biology. Arterioscler Thromb Vasc Biol. 2004;24:1549–57.

Article  Google Scholar 

Rezaie AR, Giri H. Anticoagulant and signaling functions of antithrombin. J Thromb Haemost. 2020;18:3142–53.

Article  Google Scholar 

Rehman SU, Ashraf S, Ahamad S, Sarwar T, Husain MA, Ahmad P, Tabish M, Jairajpuri MA. Identification of a novel alternatively spliced isoform of antithrombin containing an additional RCL-like loop. Biochem Biophys Res Commun. 2019;517:421–6.

Article  Google Scholar 

Chandrasekhar K, Ke H, Wang N, Goodwin T, Gierasch LM, Gershenson A, Hebert DN. Cellular folding pathway of a metastable serpin. Proc Natl Acad Sci U S A. 2016;113:6484–9.

Article 

留言 (0)

沒有登入
gif