RNA splicing dysregulation and the hallmarks of cancer

Black, D. L. Mechanisms of alternative pre-messenger RNA splicing. Annu. Rev. Biochem. 72, 291–336 (2003).

Article  CAS  Google Scholar 

Reixachs-Sole, M. & Eyras, E. Uncovering the impacts of alternative splicing on the proteome with current omics techniques. Wiley Interdiscip. Rev. RNA 13, e1707 (2022).

Article  CAS  Google Scholar 

Blencowe, B. J. Alternative splicing: new insights from global analyses. Cell 126, 37–47 (2006).

Article  CAS  Google Scholar 

Wang, E. T. et al. Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470–476 (2008). This landmark study uses RNA-seq to quantify isoform expression across tissues.

Article  CAS  Google Scholar 

Kahles, A. et al. Comprehensive analysis of alternative splicing across tumors from 8705 patients. Cancer Cell 34, 211–224.e6 (2018). This landmark study identifies splicing alterations across tumour types.

Article  CAS  Google Scholar 

Urbanski, L. M., Leclair, N. & Anczukow, O. Alternative-splicing defects in cancer: splicing regulators and their downstream targets, guiding the way to novel cancer therapeutics. Wiley Interdiscip. Rev. RNA 9, 1476 (2018).

Article  Google Scholar 

Dvinge, H., Kim, E., Abdel-Wahab, O. & Bradley, R. K. RNA splicing factors as oncoproteins and tumour suppressors. Nat. Rev. Cancer 16, 413–430 (2016).

Article  CAS  Google Scholar 

Stanley, R. F. & Abdel-Wahab, O. Dysregulation and therapeutic targeting of RNA splicing in cancer. Nat. Cancer 3, 536–546 (2022).

Article  CAS  Google Scholar 

Bonnal, S. C., López-Oreja, I. & Valcárcel, J. Roles and mechanisms of alternative splicing in cancer—implications for care. Nat. Rev. Clin. Oncol. 17, 457–474 (2020).

Article  Google Scholar 

Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).

Article  CAS  Google Scholar 

Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57–70 (2000).

Article  CAS  Google Scholar 

Wilkinson, M. E., Charenton, C. & Nagai, K. RNA splicing by the spliceosome. Annu. Rev. Biochem. 89, 359–388 (2020).

Article  CAS  Google Scholar 

Akinyi, M. V. & Frilander, M. J. At the intersection of major and minor spliceosomes: crosstalk mechanisms and their impact on gene expression. Front. Genet. 12, 700744 (2021).

Article  CAS  Google Scholar 

Lee, Y. & Rio, D. C. Mechanisms and regulation of alternative pre-mRNA splicing. Annu. Rev. Biochem. 84, 291–323 (2015).

Article  CAS  Google Scholar 

Ellis, J. D. et al. Tissue-specific alternative splicing remodels protein–protein interaction networks. Mol. Cell 46, 884–892 (2012).

Article  CAS  Google Scholar 

Tung, K. F., Pan, C. Y., Chen, C. H. & Lin, W. C. Top-ranked expressed gene transcripts of human protein-coding genes investigated with GTEx dataset. Sci. Rep. 10, 16245 (2020).

Article  CAS  Google Scholar 

Howard, J. M. & Sanford, J. R. The RNAissance family: SR proteins as multifaceted regulators of gene expression. Wiley Interdiscip. Rev. RNA 6, 93–110 (2015).

Article  CAS  Google Scholar 

Geuens, T., Bouhy, D. & Timmerman, V. The hnRNP family: insights into their role in health and disease. Hum. Genet. 135, 851–867 (2016).

Article  CAS  Google Scholar 

Papaemmanuil, E. et al. Somatic SF3B1 mutation in myelodysplasia with ring sideroblasts. N. Engl. J. Med. 365, 1384–1395 (2011).

Article  CAS  Google Scholar 

Yoshida, K. et al. Frequent pathway mutations of splicing machinery in myelodysplasia. Nature 478, 64–69 (2011).

Article  CAS  Google Scholar 

Harbour, J. W. et al. Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nat. Genet. 45, 133–135 (2013).

Article  CAS  Google Scholar 

Martin, M. et al. Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nat. Genet. 45, 933–936 (2013). Together with Harbour et al. (2013), this paper identifies recurrent mutations in SF3B1 in UVM.

Article  CAS  Google Scholar 

Imielinski, M. et al. Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing. Cell 150, 1107–1120 (2012).

Article  CAS  Google Scholar 

Lee, S. C. et al. Synthetic lethal and convergent biological effects of cancer-associated spliceosomal gene mutations. Cancer Cell 34, 225–241.e8 (2018).

Article  CAS  Google Scholar 

Taylor, J. et al. Single-cell genomics reveals the genetic and molecular bases for escape from mutational epistasis in myeloid neoplasms. Blood 136, 1477–1486 (2020).

Article  Google Scholar 

Wang, L. et al. SF3B1 and other novel cancer genes in chronic lymphocytic leukemia. N. Engl. J. Med. 365, 2497–2506 (2011). This work identifies recurrent mutations in SF3B1 in CLL.

Article  CAS  Google Scholar 

Alsafadi, S. et al. Cancer-associated SF3B1 mutations affect alternative splicing by promoting alternative branchpoint usage. Nat. Commun. 7, 10615 (2016).

Article  CAS  Google Scholar 

Darman, R. B. et al. Cancer-associated SF3B1 hotspot mutations induce cryptic 3′ splice site selection through use of a different branch point. Cell Rep. 13, 1033–1045 (2015). This work demonstrates that recurrent SF3B1 mutations alter branch point selection.

Article  CAS  Google Scholar 

Dalton, W. B. et al. The K666N mutation in SF3B1 is associated with increased progression of MDS and distinct RNA splicing. Blood Adv. 4, 1192–1196 (2020).

Article  CAS  Google Scholar 

Inoue, D. et al. Spliceosomal disruption of the non-canonical BAF complex in cancer. Nature 574, 432–436 (2019). This work shows that SF3B1 mutations disrupt chromatin remodelling to promote tumorigenesis.

Article  CAS  Google Scholar 

Lieu, Y. K. et al. SF3B1 mutant-induced missplicing of MAP3K7 causes anemia in myelodysplastic syndromes. Proc. Natl Acad. Sci. USA 119, 2111703119 (2022).

Article  Google Scholar 

Clough, C. A. et al. Coordinated missplicing of TMEM14C and ABCB7 causes ring sideroblast formation in SF3B1-mutant myelodysplastic syndrome. Blood 139, 2038–2049 (2022).

Article  CAS  Google Scholar 

Yoshimi, A. et al. Coordinated alterations in RNA splicing and epigenetic regulation drive leukaemogenesis. Nature 574, 273–277 (2019). This work demonstrates genetic and functional interactions between SRSF2 and IDH2 in leukaemia.

Article  CAS  Google Scholar 

Robertson, A. G. et al. Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell 32, 204–220.e15 (2017).

Article  CAS  Google Scholar 

Kim, E. et al. SRSF2 mutations contribute to myelodysplasia by mutant-specific effects on exon recognition. Cancer Cell 27, 617–630 (2015).

Article  CAS  Google Scholar 

Gallardo, M. et al. hnRNP K is a haploinsufficient tumor suppressor that regulates proliferation and differentiation programs in hematologic malignancies. Cancer Cell 28, 486–499 (2015).

Article  CAS  Google Scholar 

Graubert, T. A. et al. Recurrent mutations in the U2AF1 splicing factor in myelodysplastic syndromes. Nat. Genet. 44, 53–57 (2012).

Article  CAS  Google Scholar 

Brooks, A. N. et al. A pan-cancer analysis of transcriptome changes associated with somatic mutations in U2AF1 reveals commonly altered splicing events. PLoS ONE 9, 87361 (2014).

Article  Google Scholar 

Ilagan, J. O. et al. U2AF1 mutations alter splice site recognition in hematological malignancies. Genome Res. 25, 14–26 (2015).

Article  CAS  Google Scholar 

Smith, M. A. et al. U2AF1 mutations induce oncogenic IRAK4 isoforms and activate innate immune pathways in myeloid malignancies. Nat. Cell Biol. 21, 640–650 (2019).

Article  CAS  Google Scholar 

Biancon, G. et al. Precision analysis of mutant U2AF1 activity reveals deployment of stress granules in myeloid malignancies. Mol. Cell 82, 1107–1122.e7 (2022).

Article  CAS  Google Scholar 

Damm, F. et al. Mutations affecting mRNA splicing define distinct clinical phenotypes and correlate with patient outcome in myelodysplastic syndromes. Blood 119, 3211–3218 (2012).

Article  CAS  Google Scholar 

Haferlach, T. et al. Landscape of genetic lesions in 944 patients with myelodysplastic syndromes. Leukemia 28, 241–247 (2014).

Article  CAS  Google Scholar 

Madan, V. et al. Aberrant splicing of U12-type introns is the hallmark of ZRSR2 mutant myelodysplastic syndrome. Nat. Commun. 6, 6042 (2015).

Article  CAS  Google Scholar 

Inoue, D. et al. Minor intron retention drives clonal hematopoietic disorders and diverse cancer predisposition. Nat. Genet. 53, 707–718 (2021). This work shows that disruption of minor intron splicing by ZRSR2 mutations promotes clonal advantage.

Article  CAS  Google Scholar 

Wang, X., Song, X. & Yan, X. Effect of RNA splicing machinery gene mutations on prognosis of patients with MDS: a meta-analysis. Medicine 98, e15743 (2019).

Article  CAS 

留言 (0)

沒有登入
gif