Multi-information improves the performance of CCA-based SSVEP classification

Abiri R, Borhani S, Sellers EW, Jiang Y, Zhao X (2019) A comprehensive review of EEG-based brain-computer interface paradigms J Neural Eng 16:011001

Article  Google Scholar 

Ang KK, Chin ZY, Zhang HH, Guan CT (2008) Filter bank common spatial pattern (FBCSP) in brain-computer interface. In: International joint conference on neural networks, Hong Kong, People’s Republic of China: IEEE, pp 2390–2407

Bin G, Gao X, Wang Y, Li Y, Hong B, Gao S (2011) A high-speed BCI based on code modulation VEP J Neural Eng 8:025015

Article  Google Scholar 

Chen X, Wang Y, Gao S, Jung TP, Gao X (2015) Filter bank canonical correlation analysis for implementing a high-speed SSVEP-based brain-computer interface J Neural Eng 12:046008

Article  Google Scholar 

Chen XG, Wang YJ, Nakanishi M, Gao XR, Jung TP, Gao SK (2015) High-speed spelling with a noninvasive brain-computer interface Proc Natl Acad Sci USA 112:E6058– E6067

Article  CAS  Google Scholar 

Cheng M, Gao XR, Gao SG, Xu DF (2002) Design and implementation of a brain-computer interface with high transfer rates IEEE Trans Biomed Eng 49:1181–1186

Article  Google Scholar 

Cleveland WS (1979) Robust locally weighted regression and smoothing scatterplots J Am Stat Assoc 74:829–836

Article  Google Scholar 

Friman O, Volosyak I, Graser A (2007) Multiple channel detection of steady-state visual evoked potentials for brain-computer interfaces IEEE Trans Biomed Eng 54:742– 750

Article  Google Scholar 

Gao X, Wang Y, Chen X, Gao S (2021) Interface, interaction, and intelligence in generalized brain-computer interfaces Trends Cogn Sci 25:671–684

Article  Google Scholar 

Haixian W (2010) Temporally local maximum signal fraction analysis for artifact removal from biomedical signals. IEEE Trans Signal Process 58:919–4925

Article  Google Scholar 

He B, Baxter B, Edelman BJ, Cline CC, Ye W (2015) Noninvasive brain-computer interfaces based on sensorimotor rhythms Proc IEEE Inst Electr Electron Eng 103:907– 925

Article  Google Scholar 

Hong J, Qin XS (2021) Signal processing algorithms for SSVEP-based brain computer interface: state-of-the-art and recent developments J Intell Fuzzy Syst 40:10559– 10573

Article  Google Scholar 

Jin J, Wang Z, Xu R, Liu C, Wang X, Cichocki A (2021) Robust similarity measurement based on a novel time filter for SSVEPs detection IEEE Trans Neural Netw Learn Syst https://doi.org/10.1109/TNNLS.2021.3118468

Article  Google Scholar 

Lin ZL, Zhang CS, Wu W, Gao XR (2006) Frequency recognition based on canonical correlation analysis for SSVEP-based BCIs IEEE Trans Biomed Eng 53:2610–2614

Article  Google Scholar 

Lotte F, Bougrain L, Cichocki A, Clerc M, Congedo M, Rakotomamonjy A, Yger F (2018) A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update J Neural Eng 15:031005

Article  CAS  Google Scholar 

Mak JN, Arbel Y, Minett JW, McCane LM, Yuksel B, Ryan D, Thompson D, Bianchi L, Erdogmus D (2011) Optimizing the P300-based brain-computer interface: current status, limitations and future directions J Neural Eng 8:7

Article  Google Scholar 

Muller-Putz GR, Scherer R, Brauneis C, Pfurtscheller G (2005) Steady-state visual evoked potential (SSVEP)-based communication: impact of harmonic frequency components J Neural Eng 2:123–130

Article  Google Scholar 

Nakanishi M, Wang Y, Chen X, Wang YT, Gao X, Jung TP (2018) Enhancing detection of SSVEPs for a high-speed brain speller using task-related component analysis IEEE Trans Biomed Eng 65:104–112

Article  Google Scholar 

Nakanishi M, Wang Y, Wang YT, Jung TP (2015) A comparison study of canonical correlation analysis based methods for detecting steady-state visual evoked potentials PLoS One 10:e0140703

Article  Google Scholar 

Nakanishi M, Wang YJ, Wang YT, Mitsukura Y, Jung TP (2014) A high-speed brain speller using steady-state visual evoked potentials Int J Neural Syst 24:18

Article  Google Scholar 

Pan J, Gao XR, Duan F, Yan Z, Gao SK (2011) Enhancing the classification accuracy of steady-state visual evoked potential-based brain-computer interfaces using phase constrained canonical correlation analysis. J Neural Eng 8:7

Article  Google Scholar 

Poryzala P, Materka A (2014) Cluster analysis of CCA coefficients for robust detection of the asynchronous SSVEPs in brain-computer interfaces Biomed Signal Process Control 10:201–208

Article  Google Scholar 

Powers JC, Bieliaieva K, Wu S, Nam CS (2015) The human factors and ergonomics of P300-Based brain-computer interfaces Brain Sci 5:318–356

Article  Google Scholar 

Qin K, Wang R, Zhang Y (2021) Filter bank-driven multivariate synchronization index for training-free SSVEP BCI IEEE Trans Neural Syst Rehabil Eng 29:934–943

Article  Google Scholar 

Shao XH, Lin MX (2020) Filter bank temporally local canonical correlation analysis for short time window SSVEPs classification Cogn Neurodyn 14:689–696

Article  Google Scholar 

Sun L, Ji S, Ye J (2011) Canonical correlation analysis for multilabel classification: a least-squares formulation, extensions, and analysis IEEE Trans Pattern Anal Mach Intell 33:194–200

Article  Google Scholar 

Vialatte F-B, Maurice M, Dauwels J, Cichocki A (2010) Steady-state visually evoked potentials: Focus on essential paradigms and future perspectives Prog Neurobiol 90:418–438

Article  Google Scholar 

Volosyak I (2011) SSVEP-based bremen-BCI interface–boosting information transfer rates J Neural Eng 8:036020

Article  Google Scholar 

Wang H, Zheng W (2008) Local temporal common spatial patterns for robust single-trial EEG classification IEEE Trans Neural Syst Rehabil Eng 16:131–139

Article  Google Scholar 

Wang Y, Chen X, Gao X, Gao S (2017) A benchmark dataset for SSVEP-Based brain-computer interfaces IEEE Trans Neural Syst Rehabil Eng 25:1746–1752

Article  Google Scholar 

Wang Y, Wang R, Gao X, Hong B, Gao S (2006) A practical VEP-based brain-computer interface IEEE Trans Neural Syst Rehabil Eng 14:234–239

Article  CAS  Google Scholar 

Wei Q, Zhu S, Wang Y, Gao X, Guo H, Wu X (2020) A training data-driven canonical correlation analysis algorithm for designing spatial filters to enhance performance of SSVEP-Based BCIs Int J Neural Syst 30:2050020

Article  Google Scholar 

Wolpaw JR, Birbaumer N, McFarland DJ, Pfurtscheller G, Vaughan TM (2002) Brain-computer interfaces for communication and control Clin Neurophysiol 113:767–791

Article  Google Scholar 

Wong CM, Wang B, Wang Z, Lao KF, Rosa A, Wan F (2020) Spatial filtering in SSVEP-Based BCIs: unified framework and new improvements IEEE Trans Biomed Eng 67:3057–3072

Article  Google Scholar 

Yuan H, He B (2014) Brain-computer interfaces using sensorimotor rhythms: current state and future perspectives IEEE Trans Biomed Eng 61:1425–35

Article  Google Scholar 

Yuan P, Chen XG, Wang YJ, Gao XR, Gao SK (2015) Enhancing performances of SSVEP-based brain-computer interfaces via exploiting inter-subject information J Neural Eng 12:12

Article  Google Scholar 

Zhang Y, Guo D, Xu P, Zhang Y, Yao D (2016) Robust frequency recognition for SSVEP-based BCI with temporally local multivariate synchronization index Cogn Neurodyn 10:505–11

Article  Google Scholar 

Zhang Y, Xie SQ, Wang H, Zhang Z (2021) Data analytics in steady-state visual evoked potential-based brain-computer interface: a review IEEE Sens J 21:1124–38

Article  CAS  Google Scholar 

Zhang Y, Zhou G, Jin J, Wang M, Wang X and Cichocki A (2013) L1-regularized Multiway canonical correlation analysis for SSVEP-based BCI IEEE Trans Neural Syst Rehabil Eng 21:887–96

Zhang Y, Zhou GX, Jin J, Wang XY, Cichocki A (2014) Frequency recognition in SSVEP-based BCI using multiset canonical correlation analysis Int J Neural Syst 24:14

Article  Google Scholar 

Zhang YS, Xu P, Cheng KW, Yao DZ (2014) Multivariate synchronization index for frequency recognition of SSVEP-based brain-computer interface J Neurosci Methods 221:32–40

Article  Google Scholar 

Zhang YS, Yin EW, Li FL, Zhang Y, Tanaka T, Zhao QB, Cui Y, Xu P, Yao DZ, Guo DQ (2018) Two-stage frequency recognition method based on correlated component analysis for SSVEP-Based BCI IEEE Trans Neural Syst Rehabil Eng 26:1314–1323

Article  Google Scholar 

留言 (0)

沒有登入
gif