Sperm DNA methylome abnormalities occur both pre- and post-treatment in men with Hodgkin disease and testicular cancer

Daugaard G, Gundgaard MG, Mortensen MS, Agerbaek M, Holm NV, Rorth M, et al. Surveillance for stage I nonseminoma testicular cancer: outcomes and long-term follow-up in a population-based cohort. J Clin Oncol. 2014;32(34):3817–23.

Article  Google Scholar 

Engert A. ABVD or BEACOPP for advanced Hodgkin Lymphoma. J Clin Oncol. 2016;34(11):1167–9.

Article  Google Scholar 

Lee SH, Shin CH. Reduced male fertility in childhood cancer survivors. Ann Pediatr Endocrinol Metab. 2013;18(4):168–72.

Article  Google Scholar 

Delessard M, Saulnier J, Rives A, Dumont L, Rondanino C, Rives N. Exposure to chemotherapy during childhood or adulthood and consequences on spermatogenesis and male fertility. Int J Mol Sci. 2020;21(4).

Wyrobek AJ, Schmid TE, Marchetti F. Relative susceptibilities of male germ cells to genetic defects induced by cancer chemotherapies. J Natl Cancer Inst Monogr. 2005;34:31–5.

Article  Google Scholar 

Shnorhavorian M, Schwartz SM, Stansfeld B, Sadler-Riggleman I, Beck D, Skinner MK. Differential DNA methylation regions in adult human sperm following adolescent chemotherapy: potential for epigenetic inheritance. PLoS ONE. 2017;12(2):e0170085.

Article  Google Scholar 

Tempest HG, Ko E, Chan P, Robaire B, Rademaker A, Martin RH. Sperm aneuploidy frequencies analysed before and after chemotherapy in testicular cancer and Hodgkin’s lymphoma patients. Hum Reprod. 2008;23(2):251–8.

Article  Google Scholar 

O’Flaherty C, Vaisheva F, Hales BF, Chan P, Robaire B. Characterization of sperm chromatin quality in testicular cancer and Hodgkin’s lymphoma patients prior to chemotherapy. Hum Reprod. 2008;23(5):1044–52.

Article  Google Scholar 

O’Flaherty C, Hales BF, Chan P, Robaire B. Impact of chemotherapeutics and advanced testicular cancer or Hodgkin lymphoma on sperm deoxyribonucleic acid integrity. Fertil Steril. 2010;94(4):1374–9.

Article  Google Scholar 

O’Flaherty CM, Chan PT, Hales BF, Robaire B. Sperm chromatin structure components are differentially repaired in cancer survivors. J Androl. 2011;33(4):629–36.

Article  Google Scholar 

Stahl O, Boyd HA, Giwercman A, Lindholm M, Jensen A, Kjaer SK, et al. Risk of birth abnormalities in the offspring of men with a history of cancer: a cohort study using Danish and Swedish national registries. J Natl Cancer Inst. 2011;103(5):398–406.

Article  Google Scholar 

Al-Jebari Y, Glimelius I, Berglund Nord C, Cohn-Cedermark G, Stahl O, Tandstad T, et al. Cancer therapy and risk of congenital malformations in children fathered by men treated for testicular germ-cell cancer: A nationwide register study. PLoS Med. 2019;16(6):e1002816.

Article  Google Scholar 

Al-Jebari Y, Rylander L, Stahl O, Giwercman A. Risk of congenital malformations in children born before paternal cancer. JNCI Cancer Spectr. 2018;2(2):pky027.

Bieber AM, Marcon L, Hales BF, Robaire B. Effects of chemotherapeutic agents for testicular cancer on the male rat reproductive system, spermatozoa, and fertility. J Androl. 2006;27(2):189–200.

Article  Google Scholar 

Delbes G, Hales BF, Robaire B. Effects of the chemotherapy cocktail used to treat testicular cancer on sperm chromatin integrity. J Androl. 2007;28(2):241–9; discussion 50–1.

Delbes G, Chan D, Pakarinen P, Trasler JM, Hales BF, Robaire B. Impact of the chemotherapy cocktail used to treat testicular cancer on the gene expression profile of germ cells from male Brown-Norway rats. Biol Reprod. 2009;80(2):320–7.

Article  Google Scholar 

Chan D, Delbes G, Landry M, Robaire B, Trasler JM. Epigenetic alterations in sperm DNA associated with testicular cancer treatment. Toxicol Sci. 2011.

Fowden AL, Sibley C, Reik W, Constancia M. Imprinted genes, placental development and fetal growth. Horm Res. 2006;65(Suppl 3):50–8.

Google Scholar 

Isles AR, Holland AJ. Imprinted genes and mother-offspring interactions. Early Hum Dev. 2005;81(1):73–7.

Article  Google Scholar 

Tucci V, Isles AR, Kelsey G, Ferguson-Smith AC, Erice IG. Genomic imprinting and physiological processes in mammals. Cell. 2019;176(5):952–65.

Article  Google Scholar 

Robles-Matos N, Artis T, Simmons RA, Bartolomei MS. Environmental exposure to endocrine disrupting chemicals influences genomic imprinting, growth, and metabolism. Genes (Basel). 2021;12(8).

Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20(4):235–48.

Article  Google Scholar 

Butler MG. Genomic imprinting disorders in humans: a mini-review. J Assist Reprod Genet. 2009;26(9–10):477–86.

Article  Google Scholar 

Santi D, De Vincentis S, Magnani E, Spaggiari G. Impairment of sperm DNA methylation in male infertility: a meta-analytic study. Andrology. 2017;5(4):695–703.

Article  Google Scholar 

Asenius F, Danson AF, Marzi SJ. DNA methylation in human sperm: a systematic review. Hum Reprod Update. 2020;26(6):841–73.

Article  Google Scholar 

Leitao E, Di Persio S, Laurentino S, Woste M, Dugas M, Kliesch S, et al. The sperm epigenome does not display recurrent epimutations in patients with severely impaired spermatogenesis. Clin Epigenetics. 2020;12(1):61.

Article  Google Scholar 

Feinberg AP, Tycko B. The history of cancer epigenetics. Nat Rev Cancer. 2004;4(2):143–53.

Article  Google Scholar 

Kanwal R, Gupta K, Gupta S. Cancer epigenetics: an introduction. Methods Mol Biol. 2015;1238:3–25.

Article  Google Scholar 

Kobayashi H, Hiura H, John RM, Sato A, Otsu E, Kobayashi N, et al. DNA methylation errors at imprinted loci after assisted conception originate in the parental sperm. Eur J Hum Genet. 2009;17(12):1582–91.

Article  Google Scholar 

Kovalchuk A, Ilnytskyy Y, Woycicki R, Rodriguez-Juarez R, Metz GAS, Kovalchuk O. Adverse effects of paternal chemotherapy exposure on the progeny brain: intergenerational chemobrain. Oncotarget. 2018;9(11):10069–82.

Article  Google Scholar 

Chan D, Shao X, Dumargne MC, Aarabi M, Simon MM, Kwan T, et al. Customized MethylC-capture sequencing to evaluate variation in the human sperm DNA methylome representative of altered folate metabolism. Environ Health Perspect. 2019;127(8):87002.

Article  Google Scholar 

Carli D, Riberi E, Ferrero GB, Mussa A. Syndromic disorders caused by disturbed human imprinting. J Clin Res Pediatr Endocrinol. 2020;12(1):1–16.

Article  Google Scholar 

Bruno C, Blagoskonov O, Barberet J, Guilleman M, Daniel S, Tournier B, et al. Sperm imprinting integrity in seminoma patients? Clin Epigenetics. 2018;10(1):125.

Article  Google Scholar 

Burrello N, Vicari E, La Vignera S, Romeo G, Campagna C, Magro E, et al. Effects of anti-neoplastic treatment on sperm aneuploidy rate in patients with testicular tumor: a longitudinal study. J Endocrinol Invest. 2011;34(6):e121–5.

Article  Google Scholar 

Kuppers R, Klein U, Schwering I, Distler V, Brauninger A, Cattoretti G, et al. Identification of Hodgkin and Reed-Sternberg cell-specific genes by gene expression profiling. J Clin Invest. 2003;111(4):529–37.

Article  Google Scholar 

Schwering I, Brauninger A, Klein U, Jungnickel B, Tinguely M, Diehl V, et al. Loss of the B-lineage-specific gene expression program in Hodgkin and Reed-Sternberg cells of Hodgkin lymphoma. Blood. 2003;101(4):1505–12.

Article  Google Scholar 

Ehlers A, Oker E, Bentink S, Lenze D, Stein H, Hummel M. Histone acetylation and DNA demethylation of B cells result in a Hodgkin-like phenotype. Leukemia. 2008;22(4):835–41.

Article  Google Scholar 

Doerr JR, Malone CS, Fike FM, Gordon MS, Soghomonian SV, Thomas RK, et al. Patterned CpG methylation of silenced B cell gene promoters in classical Hodgkin lymphoma-derived and primary effusion lymphoma cell lines. J Mol Biol. 2005;350(4):631–40.

Article  Google Scholar 

Ushmorov A, Leithauser F, Sakk O, Weinhausel A, Popov SW, Moller P, et al. Epigenetic processes play a major role in B-cell-specific gene silencing in classical Hodgkin lymphoma. Blood. 2006;107(6):2493–500.

Article  Google Scholar 

Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, Toppari J, Andersson AM, Eisenberg ML, et al. Male reproductive disorders and fertility trends: influences of environment and genetic susceptibility. Physiol Rev. 2016;96(1):55–97.

Article  Google Scholar 

Skakkebaek NE, Rajpert-De Meyts E, Main KM. Testicular dysgenesis syndrome: an increasingly common developmental disorder with environmental aspects. Hum Reprod. 2001;16(5):972–8.

Article  Google Scholar 

Skakkebaek NE, Berthelsen JG, Giwercman A, Muller J. Carcinoma-in-situ of the testis: possible origin from gonocytes and precursor of all types of germ cell tumours except spermatocytoma. Int J Androl. 1987;10(1):19–28.

Article  Google Scholar 

Sonne SB, Almstrup K, Dalgaard M, Juncker AS, Edsgard D, Ruban L, et al. Analysis of gene expression profiles of microdissected cell populations indicates that testicular carcinoma in situ is an arrested gonocyte. Cancer Res. 2009;69(12):5241–50.

Article  Google Scholar 

Almstrup K, Nielsen JE, Mlynarska O, Jansen MT, Jorgensen A, Skakkebaek NE, et al. Carcinoma in situ testis displays permissive chromatin modifications similar to immature foetal germ cells. Br J Cancer. 2010;103(8):1269–76.

Article  Google Scholar 

Kristensen DG, Skakkebaek NE, Rajpert-De Meyts E, Almstrup K. Epigenetic features of testicular germ cell tumours in relation to epigenetic characteristics of foetal germ cells. Int J Dev Biol. 2013;57(2–4):309–17.

Article  Google Scholar 

Kim JW, Kim ST, Turner AR, Young T, Smith S, Liu W, et al. Identification of new differentially methylated genes that have potential functional consequences in prostate cancer. PLoS ONE. 2012;7(10):e48455.

Article  Google Scholar 

Najgebauer H, Liloglou T, Jithesh PV, Giger OT, Varro A, Sanderson CM. Integrated omics profiling reveals novel patterns of epigenetic programming in cancer-associated myofibroblasts. Carcinogenesis. 2019;40(4):500–12.

Article  Google Scholar 

Jin C, Lin JR, Ma L, Song Y, Shi YX, Jiang P, et al. Elevated spondin-2 expression correlates with progression and prognosis in gastric cancer. Oncotarget. 2017;8(6):10416–24.

Article  Google Scholar 

Zhang Q, Wang XQ, Wang J, Cui SJ, Lou XM, Yan B, et al. Upregulation of spondin-2 predicts poor survival of colorectal carcinoma patients. Oncotarget. 2015;6(17):15095–110.

Article  Google Scholar 

Elliott RL, Blobe GC. Role of transforming growth factor Beta in human cancer. J Clin Oncol. 2005;23(9):2078–93.

Article  Google Scholar 

Varadaraj A, Patel P, Serrao A, Bandyopadhay T, Lee NY, Jazaeri AA, et al. Epigenetic regulation of GDF2 suppresses Anoikis in Ovarian and Breast Epithelia. Neoplasia. 2015;17(11):826–38.

Article  Google Scholar 

Ouarne M, Bouvard C, Boneva G, Mallet C, Ribeiro J, Desroches-Castan A, et al. BMP9, but not BMP10, acts as a quiescence factor on tumor growth, vessel normalization and metastasis in a mouse model of breast cancer. J Exp Clin Cancer Res. 2018;37(1):209.

Article  Google Scholar 

Townsend W, Linch D. Hodgkin’s lymphoma in adults. Lancet. 2012;380(9844):836–47.

Article  Google Scholar 

留言 (0)

沒有登入
gif