Immunosenescence and inflammaging in the aged horse

Ireland JL. Demographics, management, preventive health care and disease in aged horses. Vet Clin North Am Equine Pract. 2016;32:195–214. https://doi.org/10.1016/j.cveq.2016.04.001.

Article  Google Scholar 

McGowan TW, Pinchbeck G, Phillips CJ, Perkins N, Hodgson D, McGowan C. A survey of aged horses in Queensland, Australia. Part 1: management and preventive health care.  Aust Vet J. 2010;88:420–7. https://doi.org/10.1111/j.1751-0813.2010.00637.x.

Article  CAS  Google Scholar 

Age-related trends in demographics of equids in United States. In: USDA National Animal Health Monitoring System (NAHMS) Studies. 2015. https://www.aphis.usda.gov/animal_health/nahms/equine/downloads/equine15/Equine15_is_TrendsAge.pdf. Accessed 15 Oct 2022.

Disease burden of influenza. 2022. https://www.cdc.gov/flu/about/burden/index.html. Accessed 15 Nov 2022.

CDC COVID Data Tracker. 2022. https://covid.cdc.gov/covid-data-tracker/#demographicsovertime. Accessed 15 Nov 2022

Gruver AL, Hudson LL, Sempowski GD. Immunosenescence of ageing. J Pathol. 2007;211:144.

Article  CAS  Google Scholar 

McDermott EJ, Pezzanite L, Goodrich L, Santangelo K, Chow L, Dow S, et al. Role of Innate immunity in initiation and progression of osteoarthritis, with emphasis on horses. Animals (Basel). 2021;11:3247.

Article  Google Scholar 

Hansen S, Otten ND, Fjeldborg J, Baptiste KE, Horohov DW. Age-related dynamics of pro-inflammatory cytokines in equine bronchoalveolar lavage (BAL) fluid and peripheral blood from horses managed on pasture. Exp Gerontol. 2019;124: 110634. https://doi.org/10.1016/j.exger.2019.110634.

Article  CAS  Google Scholar 

Deaths, percent of total deaths, and death rates for the 15 leading causes of death in 10-year age groups, by race and sex: United States, 2015. https://www.cdc.gov/nchs/data/dvs/LCWK2_2015.pdf. Accessed 15 Nov, 2022.

Sansoni P, Vescovini R, Fagnoni F, Biasini C, Zanni F, Zanlari L, et al. The immune system in extreme longevity. Exp Gerontol. 2008;43:61. https://doi.org/10.1016/j.exger.2007.06.008.

Article  CAS  Google Scholar 

Muylle S, Simoens P, Lauwers H. Ageing horses by an examination of their incisor teeth: an (im)possible task? Vet Record. 1996;138:295–301. https://doi.org/10.1136/vr.138.13.295.

Article  CAS  Google Scholar 

Duan R, Fu Q, Sun Y, Li Q. Epigenetic clock: a promising biomarker and practical tool in aging. Ageing Res Rev. 2022;81: 101743. https://doi.org/10.1016/j.arr.2022.101743.

Article  CAS  Google Scholar 

Larison B, Pinho GM, Haghani A, Zoller JA, Li CZ, Finno CJ, et al. Epigenetic models developed for plains zebras predict age in domestic horses and endangered equids. Commun Biol. 2021;4:1412. https://doi.org/10.1038/s42003-021-02935-z.

Article  Google Scholar 

Horvath S, Haghani A, Peng S, Hales EN, Zoller JA, Raj K, et al. DNA methylation aging and transcriptomic studies in horses. Nat Commun. 2022;13:40. https://doi.org/10.1038/s41467-021-27754-y.

Article  CAS  Google Scholar 

Wnuk M, Lewinska A, Gurgul A, Zabek T, Potocki L, Oklejewicz B, et al. Changes in DNA methylation patterns and repetitive sequences in blood lymphocytes of aged horses. Age (Dordr). 2014;36(1):31–48. https://doi.org/10.1007/s11357-013-9541-z.

Article  CAS  Google Scholar 

Ligthart GJ, Corberand JX, Geertzen HG, Meinders AE, Knook DL, Hijmans W. Necessity of the assessment of health status in human immunogerontological studies: evaluation of the SENIEUR protocol. Mech Ageing Dev. 1990;55:89–105. https://doi.org/10.1016/0047-6374(90)90108-r.

Article  CAS  Google Scholar 

Zak A, Siwinska N, Elzinga S, Barker VD, Stefaniak T, Schanbacher BJ, et al. Effects of equine metabolic syndrome on inflammation and acute-phase markers in horses. Domest Anim Endocrinol. 2020;72: 106448. https://doi.org/10.1016/j.domaniend.2020.106476.

Article  CAS  Google Scholar 

Siard-Altman MH, Harris PA, Moffett-Krotky AD, Ireland JL, Betancourt A, Barker VD, et al. Relationships of inflamm-aging with circulating nutrient levels, body composition, age, and pituitary pars intermedia dysfunction in a senior horse population. Vet Immunol Immunopathol. 2020;221: 110013. https://doi.org/10.1016/j.vetimm.2020.110013.

Article  CAS  Google Scholar 

McFarlane D, Holbrook TC. Cytokine dysregulation in aged horses and horses with pituitary pars intermedia dysfunction. J Vet Intern Med. 2008;22:436–42. https://doi.org/10.1111/j.1939-1676.2008.0076.x.

Article  CAS  Google Scholar 

Holbrook TC, Tipton T, McFarlane D. Neutrophil and cytokine dysregulation in hyperinsulinemic obese horses. Vet Immunol Immunopathol. 2012;145(1–2):283–9. https://doi.org/10.1016/j.vetimm.2011.11.013.

Article  CAS  Google Scholar 

Ligthart GJ, Corberand JX, Fournier C, et al. Admission criteria for immunogerontological studies in man: the SENIEUR protocol. Mech Ageing Dev. 1984;28:47–55. https://doi.org/10.1016/0047-6374(84)90152-0.

Article  CAS  Google Scholar 

McGowan TW, Pinchbeck GP, McGowan CM. Prevalence, risk factors and clinical signs predictive for equine pituitary pars intermedia dysfunction in aged horses. Equine Vet J. 2012;45:74–9. https://doi.org/10.1111/j.2042-3306.2012.00578.x.

Article  Google Scholar 

McFarlane D, Donaldson MT, McDonnell SM, Cribb AE. Effects of season and sample handling on measurement of plasma alpha-melanocyte-stimulating hormone concentrations in horses and ponies. Am J Vet Res. 2004;65:1463–8. https://doi.org/10.2460/ajvr.2004.65.1463.

Article  CAS  Google Scholar 

Donaldson MT, McDonnell SM, Schanbacher BJ, Lamb SV, McFarlane D, Beech J. Variation in plasma adrenocorticotropic hormone concentration and dexamethasone suppression test results with season, age, and sex in healthy ponies and horses. J Vet Intern Med. 2005;19:217–22. https://doi.org/10.1892/0891-6640(2005)19%3c217:vipahc%3e2.0.co;2.

Article  Google Scholar 

McFarlane D, Paradis MR, Zimmel D, Sykes B, Brorsen BW, Sanchez A, et al. The effect of geographic location, breed, and pituitary dysfunction on seasonal Adrenocorticotropin and α-Melanocyte-stimulating hormone plasma concentrations in horses. J Vet Intern Med. 2011;25:872–81. https://doi.org/10.1111/j.1939-1676.2011.0745.x.

Article  CAS  Google Scholar 

Herbst AC, Reedy SE, Page AE, Horohov DW, Adams AA. Effect of aging on monocyte phagocytic and inflammatory functions, and on the ex vivo inflammatory responses to lipopolysaccharide, in horses. Vet Immunol Immunopathol. 2022;250: 110459. https://doi.org/10.1016/j.vetimm.2022.110459.

Article  CAS  Google Scholar 

Vick MM, Adams AA, Murphy BA, Sessions DR, Horohov DW, Cook RF, et al. Relationships among inflammatory cytokines, obesity, and insulin sensitivity in the horse. J Anim Sci. 2007;85:1144–55. https://doi.org/10.2527/jas.2006-673.

Article  CAS  Google Scholar 

Adams AA, Katepalli MP, Kohler K, Reedy SE, Stilz JP, Vick MM, et al. Effect of body condition, body weight and adiposity on inflammatory cytokine responses in old horses. Vet Immunol Immunopathol. 2009;127:286–94. https://doi.org/10.1016/j.vetimm.2008.10.323.

Article  CAS  Google Scholar 

Sansoni P, Cossarizza A, Brianti V, Fagnoni F, Snelli G, Monti D, et al. Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood. 1993;82:2767–73.

Article  CAS  Google Scholar 

Greeley EH, Kealy RD, Ballam JM, Lawler DF, Segre M. The influence of age on the canine immune system. Vet Immunol Immunopathol. 1996;55:1–10. https://doi.org/10.1016/s0165-2427(96)05563-8.

Article  CAS  Google Scholar 

Watabe A, Fukumoto S, Komatsu T, Endo Y, Kadosawa T. Alterations of lymphocyte subpopulations in healthy dogs with aging and in dogs with cancer. Vet Immunol Immunopathol. 2011;142:189–200. https://doi.org/10.1016/j.vetimm.2011.05.008.

Article  CAS  Google Scholar 

Maue AC, Yager EJ, Swain SL, Woodland DL, Blackman MA, Haynes L. T-cell immunosenescence: lessons learned from mouse models of aging. Trends Immunol. 2009;30:301–5. https://doi.org/10.1016/j.it.2009.04.007.

Article  CAS  Google Scholar 

Lazuardi L, Jenewein B, Wolf AM, Pfister G, Tzankov A, Grubeck-Loebenstein B. Age-related loss of naïve T cells and dysregulation of T-cell/B-cell interactions in human lymph nodes. Immunology. 2005;114:37–43. https://doi.org/10.1111/j.1365-2567.2004.02006.x.

Article  CAS  Google Scholar 

Naylor K, Li G, Vallejo AN, Lee WW, Koetz K, Bryl E, et al. The influence of age on T cell generation and TCR diversity. J Immunol. 2005;174:7446–52. https://doi.org/10.4049/jimmunol.174.11.7446.

Article  CAS  Google Scholar 

Rea IM, Stewart M, Campbell P, Alexander HD, Crockard AD, Morris TC. Changes in lymphocyte subsets, interleukin 2, and soluble interleukin 2 receptor in old and very old age. Gerontology. 1996;42:69–78. https://doi.org/10.1159/000213775.

Article  CAS  Google Scholar 

Ferrando-Martinez S, Ruiz-Mateos E, Hernandez A, Gutiérrez E, Rodríguez-Méndez Mdel M, Ordoñez A, et al. Age-related deregulation of naive T cell homeostasis in elderly humans. Age (Dordr). 2011;33:197–207. https://doi.org/10.1007/s11357-010-9170-8.

Article  CAS  Google Scholar 

Willis EL, Eberle R, Wolf RF, White GL, McFarlane D. The effects of age and cytomegalovirus on markers of inflammation and lymphocyte populations in captive baboons. PLoS ONE. 2014;9: e107167. https://doi.org/10.1371/journal.pone.0107167.

Article  CAS  Google Scholar 

Pawelec G, Adibzadeh M, Solana R, Beckman I. The T cell in the ageing individual. Mech Ageing Dev. 1997;93:35–45. https://doi.org/10.1016/s0047-6374(96)01812-x.

Article  CAS  Google Scholar 

Lang A, Nikolich-Zugich J. Functional CD8 T cell memory responding to persistent latent infection is maintained for life. J Immunol. 2011;187:3759–68. https://doi.org/10.4049/jimmunol.1100666.

Article  CAS  Google Scholar 

Fulop T, Larbi A, Pawelec G. Human T cell aging and the impact of persistent viral infections. Front Immunol. 2013;4:271. https://doi.org/10.3389/fimmu.2013.00271.

Article  CAS  Google Scholar 

Willis EL, Eberle R, Wolf RF, White GL, McFarlane D. Effects of chronic viral infection on lymphocyte populations in middle-aged baboons (Papio anubis). Comp Med. 2021;71:177–87. https://doi.org/10.30802/AALAS-CM-20-000068.

Article  CAS  Google Scholar 

Pawelec G, Derhovanessian E. Role of CMV in immune senescence. Virus Res. 2011;157:175–9. https://doi.org/10.1016/j.virusres.2010.09.010.

Article  CAS  Google Scholar 

Ouyang Q, Wagner WM, Wikby A, Walter S, Aubert G, Dodi AI, et al. Large numbers of dysfunctional CD8+ T lymphocytes bearing receptors for a single dominant CMV epitope in the very old. J Clin Immunol. 2003;23:247–57. https://doi.org/10.1023/a:1024580531705.

Article  CAS 

留言 (0)

沒有登入
gif