Three-dimensional genome landscape comprehensively reveals patterns of spatial gene regulation in papillary and anaplastic thyroid cancers: a study using representative cell lines for each cancer type

Pellegriti G, Frasca F, Regalbuto C, Squatrito S, Vigneri R. Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors. J Cancer Epidemiol. 2013;2013: 965212. https://doi.org/10.1155/2013/965212.

Article  Google Scholar 

Cabanillas ME, McFadden DG, Durante C. Thyroid cancer. Lancet (London, England). 2016;388:2783–95. https://doi.org/10.1016/s0140-6736(16)30172-6.

Article  CAS  Google Scholar 

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71:209–49. https://doi.org/10.3322/caac.21660.

Article  Google Scholar 

Pizzato M, Li M, Vignat J, Laversanne M, Singh D, La Vecchia C, et al. The epidemiological landscape of thyroid cancer worldwide: GLOBOCAN estimates for incidence and mortality rates in 2020. Lancet Diabetes Endocrinol. 2022;10:264–72. https://doi.org/10.1016/s2213-8587(22)00035-3.

Article  Google Scholar 

Janz TA, Neskey DM, Nguyen SA, Lentsch EJ. Is the incidence of anaplastic thyroid cancer increasing: a population based epidemiology study. World J Otorhinolaryngol Head Neck Surg. 2019;5:34–40. https://doi.org/10.1016/j.wjorl.2018.05.006.

Article  Google Scholar 

Lin B, Ma H, Ma M, Zhang Z, Sun Z, Hsieh IY, et al. The incidence and survival analysis for anaplastic thyroid cancer: a SEER database analysis. Am J Transl Res. 2019;11:5888–96.

Google Scholar 

Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett. 2022;27:84. https://doi.org/10.1186/s11658-022-00385-x.

Article  CAS  Google Scholar 

Shi Y, Su XB, He KY, Wu BH, Zhang BY, Han ZG. Chromatin accessibility contributes to simultaneous mutations of cancer genes. Sci Rep. 2016;6:35270. https://doi.org/10.1038/srep35270.

Article  CAS  Google Scholar 

Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C, Bignell G, et al. Patterns of somatic mutation in human cancer genomes. Nature. 2007;446:153–8. https://doi.org/10.1038/nature05610.

Article  CAS  Google Scholar 

Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer. 2013;13:184–99. https://doi.org/10.1038/nrc3431.

Article  CAS  Google Scholar 

Prete A, Borges de Souza P, Censi S, Muzza M, Nucci N, Sponziello M. Update on fundamental mechanisms of thyroid cancer. Front Endocrinol. 2020;11:102. doi:https://doi.org/10.3389/fendo.2020.00102.

Beadnell TC, Nassar KW, Rose MM, Clark EG, Danysh BP, Hofmann MC, et al. Src-mediated regulation of the PI3K pathway in advanced papillary and anaplastic thyroid cancer. Oncogenesis. 2018;7:23. https://doi.org/10.1038/s41389-017-0015-5.

Article  CAS  Google Scholar 

Xu B, Ghossein R. Genomic landscape of poorly differentiated and anaplastic thyroid carcinoma. Endocr Pathol. 2016;27:205–12. https://doi.org/10.1007/s12022-016-9445-4.

Article  CAS  Google Scholar 

Khalili-Tanha G, Moghbeli M. Long non-coding RNAs as the critical regulators of doxorubicin resistance in tumor cells. Cell Mol Biol Lett. 2021;26:39. https://doi.org/10.1186/s11658-021-00282-9.

Article  CAS  Google Scholar 

Saiselet M, Floor S, Tarabichi M, Dom G, Hébrant A, van Staveren WC, et al. Thyroid cancer cell lines: an overview. Front Endocrinol. 2012;3:133. https://doi.org/10.3389/fendo.2012.00133.

Article  CAS  Google Scholar 

Yoo SK, Song YS, Lee EK, Hwang J, Kim HH, Jung G, et al. Integrative analysis of genomic and transcriptomic characteristics associated with progression of aggressive thyroid cancer. Nat Commun. 2019;10:2764. https://doi.org/10.1038/s41467-019-10680-5.

Article  CAS  Google Scholar 

McFadden DG, Vernon A, Santiago PM, Martinez-McFaline R, Bhutkar A, Crowley DM, et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc Natl Acad Sci USA. 2014;111:E1600–9. https://doi.org/10.1073/pnas.1404357111.

Article  CAS  Google Scholar 

Oishi N, Kondo T, Ebina A, Sato Y, Akaishi J, Hino R, et al. Molecular alterations of coexisting thyroid papillary carcinoma and anaplastic carcinoma: identification of TERT mutation as an independent risk factor for transformation. Modern Pathol. 2017;30:1527–37. https://doi.org/10.1038/modpathol.2017.75.

Article  CAS  Google Scholar 

Capdevila J, Mayor R, Mancuso FM, Iglesias C, Caratù G, Matos I, et al. Early evolutionary divergence between papillary and anaplastic thyroid cancers. Ann Oncol. 2018;29:1454–60. https://doi.org/10.1093/annonc/mdy123.

Article  CAS  Google Scholar 

Mishra A, Hawkins RD. Three-dimensional genome architecture and emerging technologies: looping in disease. Genome Med. 2017;9:87. https://doi.org/10.1186/s13073-017-0477-2.

Article  CAS  Google Scholar 

Razin SV, Ulianov SV. Gene functioning and storage within a folded genome. Cell Mol Biol Lett. 2017;22:18. https://doi.org/10.1186/s11658-017-0050-4.

Article  CAS  Google Scholar 

Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80. https://doi.org/10.1038/nature11082.

Article  CAS  Google Scholar 

Nora EP, Lajoie BR, Schulz EG, Giorgetti L, Okamoto I, Servant N, et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature. 2012;485:381–5. https://doi.org/10.1038/nature11049.

Article  CAS  Google Scholar 

Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80. https://doi.org/10.1016/j.cell.2014.11.021.

Article  CAS  Google Scholar 

Akdemir KC, Le VT, Chandran S, Li Y, Verhaak RG, Beroukhim R, et al. Disruption of chromatin folding domains by somatic genomic rearrangements in human cancer. Nat Genet. 2020;52:294–305. https://doi.org/10.1038/s41588-019-0564-y.

Article  CAS  Google Scholar 

Sati S, Cavalli G. Chromosome conformation capture technologies and their impact in understanding genome function. Chromosoma. 2017;126:33–44. https://doi.org/10.1007/s00412-016-0593-6.

Article  Google Scholar 

Ramani V, Shendure J, Duan Z. Understanding spatial genome organization: methods and insights. GPB. 2016;14:7–20. https://doi.org/10.1016/j.gpb.2016.01.002.

Article  Google Scholar 

Risca VI, Greenleaf WJ. Unraveling the 3D genome: genomics tools for multiscale exploration. TIG. 2015;31:357–72. https://doi.org/10.1016/j.tig.2015.03.010.

Article  CAS  Google Scholar 

Lesne A, Riposo J, Roger P, Cournac A, Mozziconacci J. 3D genome reconstruction from chromosomal contacts. Nat Methods. 2014;11:1141–3. https://doi.org/10.1038/nmeth.3104.

Article  CAS  Google Scholar 

Roix JJ, McQueen PG, Munson PJ, Parada LA, Misteli T. Spatial proximity of translocation-prone gene loci in human lymphomas. Nat Genet. 2003;34:287–91. https://doi.org/10.1038/ng1177.

Article  CAS  Google Scholar 

Mathas S, Kreher S, Meaburn KJ, Jöhrens K, Lamprecht B, Assaf C, et al. Gene deregulation and spatial genome reorganization near breakpoints prior to formation of translocations in anaplastic large cell lymphoma. Proc Natl Acad Sci USA. 2009;106:5831–6. https://doi.org/10.1073/pnas.0900912106.

Article  Google Scholar 

Fudenberg G, Getz G, Meyerson M, Mirny LA. High order chromatin architecture shapes the landscape of chromosomal alterations in cancer. Nat Biotechnol. 2011;29:1109–13. https://doi.org/10.1038/nbt.2049.

Article  CAS  Google Scholar 

Meaburn KJ, Misteli T, Soutoglou E. Spatial genome organization in the formation of chromosomal translocations. Semin Cancer Biol. 2007;17:80–90. https://doi.org/10.1016/j.semcancer.2006.10.008.

Article  CAS  Google Scholar 

De S, Michor F. DNA secondary structures and epigenetic determinants of cancer genome evolution. Nat Struct Mol Biol. 2011;18:950–5. https://doi.org/10.1038/nsmb.2089.

Article  CAS  Google Scholar 

van Berkum NL, Lieberman-Aiden E, Williams L, Imakaev M, Gnirke A, Mirny LA, et al. Hi-C: a method to study the three-dimensional architecture of genomes. JoVE. 2010. https://doi.org/10.3791/1869.

Article  Google Scholar 

Crane E, Bian Q, McCord RP, Lajoie BR, Wheeler BS, Ralston EJ, et al. Condensin-driven remodelling of X chromosome topology during dosage compensation. Nature. 2015;523:240–4. https://doi.org/10.1038/nature14450.

Article  CAS  Google Scholar 

Hu Q, Tian T, Leng Y, Tang Y, Chen S, Lv Y, et al. The O-glycosylating enzyme GALNT2 acts as an oncogenic driver in non-small cell lung cancer. Cell Mol Biol Lett. 2022;27:71. https://doi.org/10.1186/s11658-022-00378-w.

Article  CAS  Google Scholar 

Li J, Jiang M, Yu Z, Xiong C, Pan J, Cai Z, et al. Artemisinin relieves osteoarthritis by activating mitochondrial autophagy through reducing TNFSF11 expression and inhibiting PI3K/AKT/mTOR signaling in cartilage. Cell Mol Biol Lett. 2022;27:62. https://doi.org/10.1186/s11658-022-00365-1.

Article  CAS  Google Scholar 

Feng Y, He PY, Kong WD, Cen WJ, Wang PL, Liu C, et al. Apoptosis-promoting properties of miR-3074-5p in MC3T3-E1 cells under iron overload conditions. Cell Mol Biol Lett. 2021;26:37. https://doi.org/10.1186/s11658-021-00281-w.

Article  CAS  Google Scholar 

Yu M, Ren B. The three-dimensional organization of mammalian genomes. Annu Rev Cell Dev Biol. 2017;33:265–89. https://doi.org/10.1146/annurev-cellbio-100616-060531.

Article  CAS  Google Scholar 

Zhan Y, Mariani L, Barozzi I, Schulz EG, Blüthgen N, Stadler M, et al. Reciprocal insulation analysis of Hi-C data shows that TADs represent a functionally but not structurally privileged scale in the hierarchical folding of chromosomes. Genome Res. 2017;27:479–90. https://doi.org/10.1101/gr.212803.116.

Article  CAS  Google Scholar 

Diehl AG, Ouyang N, Boyle AP. Transposable elements contribute to cell and species-specific chromatin looping and gene regulation in mammalian genomes. Nat Commun. 2020;11:1796. https://doi.org/10.1038/s41467-020-15520-5.

Article  CAS  Google Scholar 

van Steensel B, Belmont AS. Lamina-associated domains: links with chromosome architecture, heterochromatin, and gene repression. Cell. 2017;169:780–91. https://doi.org/10.1016/j.cell.2017.04.022.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif