Identification of rare missense mutations in the glutamate ionotropic receptor AMPA type subunit genes in schizophrenia

Objective 

The alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate (AMPA) receptors significantly regulate the synaptic transmission and functions of various synaptic receptors. This study aimed to identify single nucleotide mutations in the glutamate receptor, ionotropic, AMPA type (GRIA) gene family, which is associated with schizophrenia.

Methods 

The exon regions of four genes (GRIA1, GRIA2, GRIA3, and GRIA4) encoding glutamate ionotropic receptor AMPA type proteins were resequenced in 516 patients with schizophrenia. We analyzed the protein function of the identified rare mutants via immunoblotting.

Results 

A total of 24 coding variants were detected in the GRIA gene family, including six missense mutations, 17 synonymous mutations, and one frameshift insertion. Notably, three ultra-rare missense mutations (GRIA1p.V182A, GRIA2p.P123Q, and GRIA4p.Y491H) were not documented in the single nucleotide polymorphism database, gnomAD genomes, and 1517 healthy controls available from Taiwan BioBank. Immunoblotting revealed GRIA4p.Y491H mutant with altered protein expressions in cultured cells compared with the wild type.

Conclusion 

Our findings suggest that, in some patients affected by schizophrenia, the GRIA gene family harbors rare functional mutations, which support rare coding variants that could contribute to the genetic architecture of this illness. The in-vitro impacts of these rare pathological mutations on the pathophysiology of schizophrenia are worthy of future investigation.

留言 (0)

沒有登入
gif