Effects of sulfur and phosphorus concentration on the lipid accumulation and fatty acid profile in Chlorella vulgaris (Chlorophyta)

Ajala SO, Alexander ML (2020) Assessment of Chlorella vulgaris, Scenedesmus obliquus, and Oocystis minuta for removal of sulfate, nitrate, and phosphate in wastewater. Int J Energy Environ Eng 11:311–326. https://doi.org/10.1007/s40095-019-00333-0

Article  Google Scholar 

Ananthi V, Raja R, Carvalho IS, Brindhadevi K, Pugazhendhi A, Arun A (2021) A realistic scenario on microalgae based biodiesel production: third generation biofuel. Fuel 284:118965. https://doi.org/10.1016/j.fuel.2020.118965

Article  Google Scholar 

Aratboni HA, Rafiei N, Garcia-Granados R, Alemzadeh A, Morones-Ramírez JB (2019) Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb Cell Factories 18:1–17. https://doi.org/10.1186/s12934-019-1228-4

Article  Google Scholar 

Arias M, Martínez A, Cañizares R (2013) Biodiesel production from microalgae: cultivation parameters that affect lipid production. Acta Biol Colomb 18:43–68

Google Scholar 

Atiku A, Mohamed RMSR, Al-Gheethi AA, Wurochekke AA, Kassim AH (2016) Harvesting microalgae biomass from the phycoremediation process of greywater. Environ Sci Pollut Res 23:24624–24641. https://doi.org/10.1007/s11356-016-7456-9

Article  Google Scholar 

Benasla A, Hausler R (2020) Growth and production of lipids in Raphidocelis subcapitata immobilized in sodium alginate beads. Energies 13:506. https://doi.org/10.3390/en13020506

Article  Google Scholar 

Bertozzini E, Galluzzi L, Penna A, Magnani M (2011) Application of the standard addition method for the absolute quantification of neutral lipids in microalgae using Nile red. J Microbiol Methods 87:17–23. https://doi.org/10.1016/j.mimet.2011.06.018

Article  Google Scholar 

Bhatia S (2015) Modern applications of plant biotechnology in pharmaceutical sciences. In: Bhatia S, Sharma K, Dahiya R, Bera T (eds) Plant Tissue Culture. Academic Press, pp 31–107

Google Scholar 

Bligh EG, Dyer WJ (1959) A rapid method of total extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

Article  Google Scholar 

Cakmak T, Angun P, Demiray Y, Ozkan AD, Elibol Z, Tekinay T (2012) Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii. Biotechnol Bioeng 109:1947–1957. https://doi.org/10.1002/bit.24474

Article  Google Scholar 

Char CD, Guerrero SN, Alzamora SM (2007) Growth of Eurotium chevalieri in milk jam: influence of pH, potassium sorbate and water activity. J Food Saf 27:1–16. https://doi.org/10.1111/j.1745-4565.2007.00055.x

Article  Google Scholar 

Chu F, Chu P, Cai P, Li W, Lam P, Zeng R (2013) Phosphorus plays an important role in enhancing biodiesel productivity of Chlorella vulgaris under nitrogen deficiency. Bioresour Technol 134:341–346. https://doi.org/10.1016/j.biortech.2013.01.131

Article  Google Scholar 

Converti A, Casazza AA, Ortiz EY, Perego P, Del Borghi M (2009) Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem Eng Process Process Intensif 48:1146–1151. https://doi.org/10.1016/j.cep.2009.03.006

Article  Google Scholar 

Deng X, Fei X, Li Y (2011) The effects of nutritional restriction on neutral lipid accumulation in Chlamydomonas and Chlorella. Afr J Microbiol Res 5:260–270. https://doi.org/10.5897/AJMR10.557

Article  Google Scholar 

Devadasu E, Chinthapalli DK, Chouhan N, Madireddi SK, Rasineni GK, Sripadi P, Subramanyam R (2019) Changes in the photosynthetic apparatus and lipid droplet formation in Chlamydomonas reinhardtii under iron deficiency. Photosynth Res 139:253–266. https://doi.org/10.1007/s11120-018-0580-2

Article  Google Scholar 

Folch J, Lees M, Sloane-Stanley GH (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509. https://doi.org/10.1016/S0021-9258(18)64849-5

Article  Google Scholar 

Gaytan-Luna DE, Ochoa-Alfaro AE, Rocha-Uribe A, Pérez-Martínez AS, Alpuche-Solís AG, Soria-Guerra RE (2016) Effect of green and red light in lipid accumulation and transcriptional profile of genes implicated in lipid biosynthesis in Chlamydomonas reinhardtii. Biotechnol Progress 32:1404–1411. https://doi.org/10.1002/btpr.2368

Article  Google Scholar 

Hase E, Morimura Y, Mihara S, Tamiya H (1958) The role of sulfur in the cell division of Chlorella. Arch Microbiol 31:87–95. https://doi.org/10.1007/BF00409966

Article  Google Scholar 

Hernandez-Torres A, Zapata-Morales AL, Alfaro AEO, Soria-Guerra RE (2016) Identification of gene transcripts involved in lipid biosynthesis in Chlamydomonas reinhardtii under nitrogen, iron and sulfur deprivation. World J Microbiol Biotechnol 32:55. https://doi.org/10.1007/s11274-016-2008-5

Article  Google Scholar 

Horváth S (1970) Importance of the generation time in microbiological experiments. Folia Microbiol 15:259–266. https://doi.org/10.1007/BF02869052

Article  Google Scholar 

Ibáñez-Salazar A, Rosales-Mendoza S, Rocha-Uribe A, Ramírez-Alonso JI, Lara-Hernández I, Hernándes-Torres A, Paz-Maldonado LMT, Silva-Ramirez AS, Bañuelos-Hernández B, Martínez-Salgado JL, Soria-Guerra RE (2014) Over-expression of Dof-type transcription factor increases lipid production in Chlamydomonas reinhardtii. J Biotechnol 184:27–38. https://doi.org/10.1016/j.jbiotec.2014.05.003

Article  Google Scholar 

Jiang H, Gao K (2004) Effects of lowering temperature during culture on the production of polyunsaturated fatty acids in the marine diatom Phaeodactylum tricornutum. J Phycol 40:651–654. https://doi.org/10.1111/j.1529-8817.2004.03112.x

Article  Google Scholar 

Kuo CM, Chen TY, Lin TH, Kao CY, Lai JT, Chang JS, Lin CS (2015) Cultivation of Chlorella sp. GD using piggery wastewater for biomass and lipid production. Bioresour Technol 194:326–333. https://doi.org/10.1016/j.biortech.2015.07.026

Article  Google Scholar 

Lam MK, Yusoff MI, Uemura Y, Lim JW, Khoo CG, Lee KT, Ong HC (2017) Cultivation of Chlorella vulgaris using nutrients source from domestic wastewater for biodiesel production: growth condition and kinetic studies. Renew Energy 103:197–207. https://doi.org/10.1016/j.renene.2016.11.032

Article  Google Scholar 

Lari Z, Moradi-Kheibari N, Ahmadzadeh H, Abrishamchi P, Murry M (2016) Bioprocess engineering of microalgae to optimize lipid production through nutrient management. J Appl Phycol 28:3235–3250. https://doi.org/10.1007/s10811-016-0884-6

Article  Google Scholar 

Li P, Sun X, Sun X, Tang J, Turaib A, Wang X, Cheng Z, Deng L, Zhang Y (2020) Response of lipid productivity to photosynthesis of Chlorella vulgaris under various nutrient stress modes. J Renew Sustain Energy 12:056102. https://doi.org/10.1063/1.5144539

Article  Google Scholar 

Liang K, Zhang Q, Gu M, Cong W (2013) Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp. J Appl Phycol 23:311–318. https://doi.org/10.1007/s10811-012-9865-6

Article  Google Scholar 

Li-Beisson Y, Peltier G (2013) Third-generation biofuels: current and future research on microalgal lipid biotechnology. OCL 20:D606. https://doi.org/10.1051/ocl/2013031

Article  Google Scholar 

Mandal S, Mallick N (2009) Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol 84:281–291. https://doi.org/10.1007/s00253-009-1935-6

Article  Google Scholar 

Matsui H, Shiozaki K, Okumura Y, Ishikawa M, Waqalevu V, Hayasaka O, Honda A, Kotani T (2020) Effects of phosphorous deficiency of a microalga Nannochloropsis oculata on its fatty acid profiles and intracellular structure and the effectiveness in rotifer nutrition. Algal Res 49:101905. https://doi.org/10.1016/j.algal.2020.101905

Article  Google Scholar 

Mizuno Y, Sato A, Watanabe K, Hirata A, Takeshita T, Ota S, Sato N, Zachleder V, Tsuzuki M, Kawano S (2013) Sequential accumulation of starch and lipid induced by sulfur deficiency in Chlorella and Parachlorella species. Bioresour Technol 129:150–155. https://doi.org/10.1016/j.biortech.2012.11.030

Article  Google Scholar 

Mohd N, Yasin NHM, Takriff MS (2021) Predictive growth model of indigenous green microalgae (Scenedesmus sp. UKM9) in palm oil mill effluent (POME). IOP Conf Ser Mater Sci Eng 1051:012070. https://doi.org/10.1088/1757-899X/1051/1/012070

Article  Google Scholar 

Myers RH, Montgomery DC, Anderson-Cook CM (2009) The analysis of second-order response surfaces, in response surface methodology. Process and Product Optimization Using Designed Experiments, 3rd edn. John Wiley & Sons, Hoboken, NJ, USA

Google Scholar 

Obata M, Toda T, Taguchi S (2009) Using chlorophyll fluorescence to monitor yields of microalgal production. J Appl Phycol 21:315–319. https://doi.org/10.1007/s10811-008-9369-6

Article  Google Scholar 

Ohse S, Derner RB, Ozorio RÁ, Corrêa RG, Furlong EB, Cunha PCR (2015) Lipid content and fatty acid profiles in ten species of microalgae. IDESIA 33:93–101. https://doi.org/10.4067/S0718-34292015000100010

Article  Google Scholar 

Ong S, Kao C, Chiu S, Tsai M, Lin C (2010) Characterization of the thermal-tolerant mutants of Chlorella sp. with high growth rate and application in outdoor photobioreactor cultivation. Bioresour Technol 101:2880–2883. https://doi.org/10.1016/j.biortech.2009.10.007

Article  Google Scholar 

Perdana BA, Chaidir Z, Kusnanda AJ, Dharma A, Zakaria IJ, Syafrizayanti BA, Putra MY (2021) Omega-3 fatty acids of microalgae as a food supplement: a review of exogenous factors for production enhancement. Algal Res 60:102542. https://doi.org/10.1016/j.algal.2021.102542

Article  Google Scholar 

Přibyl P, Cepák V, Zachleder V (2012) Production of lipids in 10 strains of Chlorella and Parachlorella, and enhanced lipid productivity in Chlorella vulgaris. Appl Microbiol Biotechnol 94:549–561. https://doi.org/10.1007/s00253-012-3915-5

Article  Google Scholar 

Qari HA, Oves M (2020) Fatty acid synthesis by Chlamydomonas reinhardtii in phosphorus limitation. J Bioenerg Biomembr 52:27–38. https://doi.org/10.1007/s10863-019-09813-8

Article  Google Scholar 

Rawat J, Gupta PK, Pandit S, Priya K, Agarwal D, Pant M, Thakur VK, Pande V (2022) Latest expansions in lipid enhancement of microalgae for biodiesel production: an update. Energies 15:1550. https://doi.org/10.3390/en15041550

Article  Google Scholar 

Rodolfi L, Zittelli GC, Bassi N, Padovani G, Biondi N (2009) Microalgae for oil: strain selection induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112. https://doi.org/10.1002/bit.22033

Article  Google Scholar 

Ru ITK, Sung YY, Jusoh M, Wahid MEA, Nagappan T (2020) Chlorella vulgaris: a perspective on its potential for combining high biomass with high value bioproducts. Appl Phycol 1:2–11. https://doi.org/10.1080/26388081.2020.1715256

Article  Google Scholar 

Sajjadi B, Chen WY, Ramanb AAA, Ibrahimc S (2018) Microalgae lipid and biomass for biofuel production: a comprehensive review on lipid enhancement strategies and their effects on fatty acid composition. Renew Sustain Energy Rev 97:200–232. https://doi.org/10.1016/j.rser.2018.07.050

Article  Google Scholar 

Sakarika M, Kornaros M (2017) Kinetics of growth and lipids accumulation in Chlorella vulgaris during batch heterotrophic cultivation: effect of different nutrient limitation strategies. Bioresour Technol 243:356–365. https://doi.org/10.1016/j.biortech.2017.06.110

Article  Google Scholar 

Shen P, Wang H, Pan Y, Meng Y, Wu P, Xue S (2016) Identification of characteristic fatty acids to quantify triacylglycerols in microalgae. Front Plant Sci 7:1–7. https://doi.org/10.3389/fpls.2016.00162

Article  Google Scholar 

Takeshita T, Ota S, Yamazaki T, Hirata A, Zachleder V, Kawano S (2014) Starch and lipid accumulation in eight strains of six Chlorella species under comparatively high light intensity and aeration culture conditions. Bioresour Technol 158:127–134. https://doi.org/10.1016/j.biortech.2014.01.135

Article  Google Scholar 

Tjørve KMC, Tjørve E (2017) The use of Gompertz models in growth analyses, and new Gompertz-model approach: an addition to the unified-Richards family. PLoS ONE 12:e0178691. https://doi.org/10.1371/journal.pone.0178691

Article 

留言 (0)

沒有登入
gif