Tooth number abnormality: from bench to bedside

Cammarata-Scalisi, F., Avendano, A. & Callea, M. Main genetic entities associated with supernumerary teeth. Arch. Argent. Pediatr. 116, 437–444 (2018).

Google Scholar 

Demiriz, L., Durmuslar, M. C. & Misir, A. F. Prevalence and characteristics of supernumerary teeth: a survey on 7348 people. J. Int Soc. Prev. Community Dent. 5, S39–S43 (2015).

Article  Google Scholar 

De Santis, D. et al. Syndromes associated with dental agenesis. Minerva Stomatol. 68, 42–56 (2019).

Article  Google Scholar 

Al-Ani, A. H., Antoun, J. S., Thomson, W. M., Merriman, T. R. & Farella, M. Hypodontia: an update on Its etiology, classification, and clinical management. Biomed. Res. Int. 2017, 9378325 (2017).

Article  Google Scholar 

Mogollon, I., Moustakas-Verho, J. E., Niittykoski, M. & Ahtiainen, L. The initiation knot is a signaling center required for molar tooth development. Development https://doi.org/10.1242/dev.194597 (2021).

Ahtiainen, L. et al. Directional cell migration, but not proliferation, drives hair placode morphogenesis. Dev. Cell 28, 588–602 (2014).

Article  Google Scholar 

Prochazka, J. et al. Migration of founder epithelial cells drives proper molar tooth positioning and morphogenesis. Dev. Cell 35, 713–724 (2015).

Article  Google Scholar 

Li, J., Economou, A. D., Vacca, B. & Green, J. B. A. Epithelial invagination by a vertical telescoping cell movement in mammalian salivary glands and teeth. Nat. Commun. 11, 2366 (2020).

Article  Google Scholar 

Li, J., Chatzeli, L., Panousopoulou, E., Tucker, A. S. & Green, J. B. Epithelial stratification and placode invagination are separable functions in early morphogenesis of the molar tooth. Development 143, 670–681 (2016).

Google Scholar 

Balic, A. Concise review: cellular and molecular mechanisms regulation of tooth initiation. Stem Cells 37, 26–32 (2019).

Article  Google Scholar 

Balic, A. & Thesleff, I. Tissue interactions regulating tooth development and renewal. Curr. Top. Dev. Biol. 115, 157–186 (2015).

Article  Google Scholar 

Bonczek, O. et al. Tooth agenesis: what do we know and is there a connection to cancer? Clin. Genet 99, 493–502 (2021).

Article  Google Scholar 

Lu, X. et al. The epidemiology of supernumerary teeth and the associated molecular mechanism. Organogenesis 13, 71–82 (2017).

Article  Google Scholar 

Wijn, M. A., Keller, J. J., Giardiello, F. M. & Brand, H. S. Oral and maxillofacial manifestations of familial adenomatous polyposis. Oral. Dis. 13, 360–365 (2007).

Article  Google Scholar 

Mortada, I., Mortada, R. & Al Bazzal, M. Dental pulp stem cells and the management of neurological diseases: an update. J. Neurosci. Res. 96, 265–272 (2018).

Article  Google Scholar 

Yao, J. et al. Human supernumerary teeth-derived apical papillary stem cells possess preferable characteristics and efficacy on hepatic fibrosis in mice. Stem Cells Int. 2020, 6489396 (2020).

Article  Google Scholar 

Makino, Y. et al. Immune therapeutic potential of stem cells from human supernumerary teeth. J. Dent. Res. 92, 609–615 (2013).

Article  Google Scholar 

Takahashi, K. et al. Development of tooth regenerative medicine strategies by controlling the number of teeth using targeted molecular therapy. Inflamm. Regen. 40, 21 (2020).

Article  Google Scholar 

Murashima-Suginami A. et al. Anti-USAG-1 therapy for tooth regeneration through enhanced BMP signaling. Sci Adv. https://doi.org/10.1126/sciadv.abf1798 (2021).

Mishima, S. et al. Local application of Usag-1 siRNA can promote tooth regeneration in Runx2-deficient mice. Sci. Rep. 11, 13674 (2021).

Article  Google Scholar 

Wu, Z. et al. Whole-tooth regeneration by allogeneic cell reassociation in pig jawbone. Tissue Eng. Part A 25, 1202–1212 (2019).

Article  Google Scholar 

Nakao, K. et al. The development of a bioengineered organ germ method. Nat. Methods 4, 227–230 (2007).

Article  Google Scholar 

Cate, A. J., & Nanci, A. Ten Cate’s Oral Histology: Development, Structure, and Function 9th edn (ed Nanci, A.) Ch. 5 (Elsevier, 2003).

Lan, Y., Jia, S. & Jiang, R. Molecular patterning of the mammalian dentition. Semin Cell Dev. Biol. 25-26, 61–70 (2014).

Article  Google Scholar 

Jernvall, J. & Thesleff, I. Reiterative signaling and patterning during mammalian tooth morphogenesis. Mech. Dev. 92, 19–29 (2000).

Article  Google Scholar 

D’Souza, R. N. & Klein, O. D. Unraveling the molecular mechanisms that lead to supernumerary teeth in mice and men: current concepts and novel approaches. Cells Tissues Organs 186, 60–69 (2007).

Article  Google Scholar 

Juuri, E. & Balic, A. The biology underlying abnormalities of tooth number in humans. J. Dent. Res. 96, 1248–1256 (2017).

Article  Google Scholar 

Stembirek, J. et al. Early morphogenesis of heterodont dentition in minipigs. Eur. J. Oral. Sci. 118, 547–558 (2010).

Article  Google Scholar 

Kim, E. J., Jung, S. Y., Wu, Z., Zhang, S. & Jung, H. S. Sox2 maintains epithelial cell proliferation in the successional dental lamina. Cell Prolif. 53, e12729 (2020).

Article  Google Scholar 

Dosedelova, H. et al. Fate of the molar dental lamina in the monophyodont mouse. PLoS One 10, e0127543 (2015).

Article  Google Scholar 

Amen, M. et al. PITX2 and beta-catenin interactions regulate Lef-1 isoform expression. Mol. Cell Biol. 27, 7560–7573 (2007).

Article  Google Scholar 

Sun, Z. et al. Sox2 and Lef-1 interact with Pitx2 to regulate incisor development and stem cell renewal. Development 143, 4115–4126 (2016).

Google Scholar 

Yu W. et al. Pitx2-Sox2-Lef1 interactions specify progenitor oral/dental epithelial cell signaling centers. Development https://doi.org/10.1242/dev.186023 (2020).

Vadlamudi, U. et al. PITX2, beta-catenin and LEF-1 interact to synergistically regulate the LEF-1 promoter. J. Cell Sci. 118, 1129–1137 (2005).

Article  Google Scholar 

Rostampour, N., Appelt, C. M., Abid, A. & Boughner, J. C. Expression of new genes in vertebrate tooth development and p63 signaling. Dev. Dyn. 248, 744–755 (2019).

Article  Google Scholar 

Laurikkala, J. et al. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 133, 1553–1563 (2006).

Article  Google Scholar 

Vangenderen, C. et al. Development of several organs that require inductive Epithelial–Mesenchymal interactions is impaired in Lef-1-deficient mice. Gene Dev. 8, 2691–2703 (1994).

Article  Google Scholar 

Sasaki, T. et al. LEF1 is a critical epithelial survival factor during tooth morphogenesis. Dev. Biol. 278, 130–143 (2005).

Article  Google Scholar 

Kratochwil, K., Dull, M., Farinas, I., Galceran, T. & Grosschedl, R. Lef1 expression is activated by BMP-4 and regulates inductive tissue interactions in tooth and hair development. Gene Dev. 10, 1382–1394 (1996).

Article  Google Scholar 

Laurikkala, J. et al. TNF signaling via the ligand-receptor pair ectodysplasin and edar controls the function of epithelial signaling centers and is regulated by Wnt and activin during tooth organogenesis. Dev. Biol. 229, 443–455 (2001).

Article  Google Scholar 

Kim, R. et al. Early perturbation of Wnt signaling reveals patterning and invagination-evagination control points in molar tooth development. Development https://doi.org/10.1242/dev.199685 (2021).

Panousopoulou, E. & Green, J. B. Invagination of ectodermal placodes is driven by cell intercalation-mediated contraction of the suprabasal tissue canopy. PLoS Biol. 14, e1002405 (2016).

Article  Google Scholar 

Mammoto, T. et al. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev. Cell 21, 758–769 (2011).

Article  Google Scholar 

Tucker, A. & Sharpe, P. The cutting-edge of mammalian development; how the embryo makes teeth. Nat. Rev. Genet 5, 499–508 (2004).

Article  Google Scholar 

Rosowski, J. et al. Emulating the early phases of human tooth development in vitro. Sci. Rep. 9, 7057 (2019).

Article  Google Scholar 

Kollar, E. J. & Baird, G. R. Tissue interactions in embryonic mouse tooth germs. I. Reorganization of the dental epithelium during tooth-germ reconstruction. J. Embryol. Exp. Morphol. 24, 159–171 (1970).

Google Scholar 

Kollar, E. J. & Baird, G. R. Tissue interactions in embryonic mouse tooth germs. II. The inductive role of the dental papilla. J. Embryol. Exp. Morphol. 24, 173–186 (1970).

Google Scholar 

Thesleff, I. & Sharpe, P. Signalling networks regulating dental development. Mech. Dev. 67, 111–123 (1997).

Article  Google Scholar 

Mina, M. & Kollar, E. J. The induction of odontogenesis in non-dental mesenchyme combined with early murine mandibular arch epithelium. Arch. Oral. Biol. 32, 123–127 (1987).

Article  Google Scholar 

Lumsden, A. G. Spatial organization of the epithelium and the role of neural crest cells in the initiation of the mammalian tooth germ. Development 103, 155–169 (1988).

Article  Google Scholar 

Mogollon, I. & Ahtiainen, L. Live tissue imaging sheds light on cell level events during ectodermal organ development. Front. Physiol. 11, 818 (2020).

Article  Google Scholar 

Abramyan, J., Geetha-Loganathan, P., Sulcova, M. & Buchtova, M. Role of cell death in cellular processes during odontogenesis. Front Cell Dev. Biol. 9, 671475 (2021).

Article  Google Scholar 

Ahtiainen, L., Uski, I., Thesleff, I. & Mikkola, M. L. Early epithelial signaling center governs tooth budding morphogenesis. J. Cell Biol. 214, 753–767 (2016).

Article  Google Scholar 

Zhu, X. J. et al. Intra-epithelial requirement of canonical Wnt signaling for tooth morphogenesis. J. Biol. Chem. 288, 12080–12089 (2013).

Article  Google Scholar 

Matalova, E., Tucker, A. S. & Sharpe, P. T. Death in the life of a tooth. J. Dent. Res. 83, 11–16 (2004).

Article  Google Scholar 

Jernvall, J., Aberg, T., Kettunen, P., Keranen, S. & Thesleff, I. The life history of an embryonic signaling center: BMP-4 induces p21 and is associated with apoptosis in the mouse tooth enamel knot. Development 125, 161–169 (1998).

Article  Google Scholar 

Li, J. et al. Mesenchymal Sufu regulates development of mandibular molars via Shh signaling. J. Dent. Res. 98, 1348–1356 (2019).

Article  Google Scholar 

Du, W., Hu, J. K., Du, W. & Klein, O. D. Lineage tracing of epithelial cells in developing teeth reveals two strategies for building signaling centers. J. Biol. Chem. 292, 15062–15069 (2017).

Article 

留言 (0)

沒有登入
gif