Dormant cancer cells: programmed quiescence, senescence, or both?

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674.

Article  CAS  Google Scholar 

Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

Article  CAS  Google Scholar 

Hanahan, D. (2022). Hallmarks of cancer: New dimensions. Cancer Discovery, 12(1), 31–46.

Article  CAS  Google Scholar 

Friberg, S., & Nystrom, A. (2015). Cancer metastases: early dissemination and late recurrences. Cancer Growth Metastasis, 8, 43–9.

Article  Google Scholar 

Willis, R.A., The spread of tumours in the human body. 1934: J. & A. Churchill.

Hadfield, G. (1954). The dormant cancer cell. British Medical Journal, 2(4888), 607–610.

Article  CAS  Google Scholar 

Hosseini, H., et al. (2016). Early dissemination seeds metastasis in breast cancer. Nature, 540(7634), 552–558.

Article  CAS  Google Scholar 

Phan, T. G., & Croucher, P. I. (2020). The dormant cancer cell life cycle. Nature Reviews Cancer, 20(7), 398–411.

Article  CAS  Google Scholar 

Aguirre-Ghiso, J. A. (2007). Models, mechanisms and clinical evidence for cancer dormancy. Nature Reviews Cancer, 7(11), 834–846.

Article  CAS  Google Scholar 

Santos-de-Frutos, K., & Djouder, N. (2021). When dormancy fuels tumour relapse. Communication Biology, 4(1), 747.

Article  Google Scholar 

Giancotti, F. G. (2013). Mechanisms governing metastatic dormancy and reactivation. Cell, 155(4), 750–764.

Article  CAS  Google Scholar 

Aguirre-Ghiso, J. A. (2018). How dormant cancer persists and reawakens. Science, 361(6409), 1314–1315.

Article  CAS  Google Scholar 

Aguirre-Ghiso, J. A. (2021). Translating the science of cancer dormancy to the clinic. Cancer Research, 81(18), 4673–4675.

Article  CAS  Google Scholar 

Summers, M.A., McDonald M.M., & Croucher P.I. (2020). Cancer cell dormancy in metastasis. Cold Spring Harbor Perspectives in Medicine, 10(4).

Holmgren, L., O’Reilly, M. S., & Folkman, J. (1995). Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Medicine, 1(2), 149–153.

Article  CAS  Google Scholar 

Townson, J. L., & Chambers, A. F. (2006). Dormancy of solitary metastatic cells. Cell Cycle, 5(16), 1744–1750.

Article  CAS  Google Scholar 

Sosa, M. S., Bragado, P., & Aguirre-Ghiso, J. A. (2014). Mechanisms of disseminated cancer cell dormancy: An awakening field. Nature Reviews Cancer, 14(9), 611–622.

Article  CAS  Google Scholar 

Risson, E., et al. (2020). The current paradigm and challenges ahead for the dormancy of disseminated tumor cells. Nature Cancer, 1(7), 672–680.

Article  CAS  Google Scholar 

Hayflick, L. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research, 37, 614–36.

Article  CAS  Google Scholar 

Hayflick, L., & Moorhead, P. S. (1961). The serial cultivation of human diploid cell strains. Experimental Cell Research, 25, 585–621.

Article  CAS  Google Scholar 

Masutomi, K., et al. (2003). Telomerase maintains telomere structure in normal human cells. Cell, 114(2), 241–253.

Article  CAS  Google Scholar 

Adda di Fagagna, F., et al. (2003). A DNA damage checkpoint response in telomere initiated senescence. Nature, 426(6963), 194–8.

Article  Google Scholar 

Takai, H., Smogorzewska, A., & de Lange, T. (2003). DNA damage foci at dysfunctional telomeres. Current Biology, 13(17), 1549–1556.

Article  CAS  Google Scholar 

Herbig, U., et al. (2004). Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Molecular Cell, 14(4), 501–513.

Article  CAS  Google Scholar 

Rodier, F., & Campisi, J. (2011). Four faces of cellular senescence. Journal of Cell Biology, 192(4), 547–556.

Article  CAS  Google Scholar 

Dimri, G. P., et al. (2000). Regulation of a senescence checkpoint response by the E2F1 transcription factor and p14(ARF) tumor suppressor. Molecular and Cellular Biology, 20(1), 273–285.

Article  CAS  Google Scholar 

Lin, A. W., et al. (1998). Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes & Development, 12(19), 3008–3019.

Article  CAS  Google Scholar 

Serrano, M., et al. (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell, 88(5), 593–602.

Article  CAS  Google Scholar 

Zhu, J., et al. (1998). Senescence of human fibroblasts induced by oncogenic Raf. Genes & Development, 12(19), 2997–3007.

Article  CAS  Google Scholar 

Di Micco, R., et al. (2006). Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature, 444(7119), 638–642.

Article  Google Scholar 

Schmitt, C. A., et al. (2002). A senescence program controlled by p53 and p16INK4a contributes to the outcome of cancer therapy. Cell, 109(3), 335–346.

Article  CAS  Google Scholar 

Rodier, F., et al. (2009). Persistent DNA damage signalling triggers senescence-associated inflammatory cytokine secretion. Nature Cell Biology, 11(8), 973–979.

Article  CAS  Google Scholar 

Le, O. N., et al. (2010). Ionizing radiation-induced long-term expression of senescence markers in mice is independent of p53 and immune status. Aging Cell, 9(3), 398–409.

Article  CAS  Google Scholar 

Gire, V., & Dulic, V. (2015). Senescence from G2 arrest, revisited. Cell Cycle, 14(3), 297–304.

Article  CAS  Google Scholar 

Kuilman, T., et al. (2010). The essence of senescence. Genes & Development, 24(22), 2463–2479.

Article  CAS  Google Scholar 

Hernandez-Segura, A., Nehme, J., & Demaria, M. (2018). Hallmarks of Cellular Senescence. Trends in Cell Biology, 28(6), 436–453.

Article  CAS  Google Scholar 

Rajagopalan, S., & Long, E. O. (2012). Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proceedings of the National Academy of Sciences USA, 109(50), 20596–20601.

Article  CAS  Google Scholar 

Munoz-Espin, D., et al. (2013). Programmed cell senescence during mammalian embryonic development. Cell, 155(5), 1104–1118.

Article  CAS  Google Scholar 

Storer, M., et al. (2013). Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell, 155(5), 1119–1130.

Article  CAS  Google Scholar 

Jun, J. I., & Lau, L. F. (2010). Cellular senescence controls fibrosis in wound healing. Aging (Albany NY), 2(9), 627–631.

Article  CAS  Google Scholar 

Kong, X., et al. (2012). Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology, 56(3), 1150–1159.

Article  CAS  Google Scholar 

Demaria, M., et al. (2014). An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA. Developmental Cell, 31(6), 722–733.

Article  CAS  Google Scholar 

Krizhanovsky, V., et al. (2008). Implications of cellular senescence in tissue damage response, tumor suppression, and stem cell biology. Cold Spring Harbor Symposium Quant Biology, 73, 513–22.

Article  CAS  Google Scholar 

Krizhanovsky, V., et al. (2008). Senescence of activated stellate cells limits liver fibrosis. Cell, 134(4), 657–667.

Article  CAS  Google Scholar 

Childs, B. G., et al. (2014). Senescence and apoptosis: Dueling or complementary cell fates? EMBO Reports, 15(11), 1139–1153.

Article  CAS  Google Scholar 

Baker, D. J., et al. (2011). Clearance of p16Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232–236.

Article  CAS  Google Scholar 

Halazonetis, T. D., Gorgoulis, V. G., & Bartek, J. (2008). An oncogene-induced DNA damage model for cancer development. Science, 319(5868), 1352–1355.

Article  CAS  Google Scholar 

Burd, C. E., et al. (2013). Monitoring tumorigenesis and senescence in vivo with a p16(INK4a)-luciferase model. Cell, 152(1–2), 340–351.

Article  CAS  Google Scholar 

Ewald, J. A., et al. (2010). Therapy-induced senescence in cancer. Journal of the National Cancer Institute, 102(20), 1536–1546.

留言 (0)

沒有登入
gif