Contemporary Advances in Computer-Assisted Bone Histomorphometry and Identification of Bone Cells in Culture

Dempster DW, Compston JE, Drezner MK et al (2013) Standardized nomenclature, symbols, and units for bone histomorphometry: a 2012 update of the report of the ASBMR histomorphometry nomenclature committee. J Bone Miner Res 28:2–17. https://doi.org/10.1002/jbmr.1805

Article  Google Scholar 

Jee WSS (2005) The past, present, and future of bone morphometry: its contribution to an improved understanding of bone biology. J Bone Miner Metab 23:1–10

Article  Google Scholar 

Gundersen HJG (1980) Stereology - or how figures for spatial shape and content are obtained by observation of structures in sections. Microsc Acta 83:409–426

CAS  Google Scholar 

Vesterby A, Gundersen HJG, Melsen F (1989) Star volume of marrow space and trabeculae of the first lumbar vertebra: sampling efficiency and biological variation. Bone 10:7–13. https://doi.org/10.1016/8756-3282(89)90140-3

Article  CAS  Google Scholar 

Vesterby A, Kragstrup J, Gundersen HJG, Melsen F (1987) Unbiased stereologic estimation of surface density in bone using vertical sections. Bone 8:13–17. https://doi.org/10.1016/8756-3282(87)90126-8

Article  CAS  Google Scholar 

Mellish RWE, Ferguson-Pell MW, Cochran GVB et al (1991) A new manual method for assessing two-dimensional cancellous bone structure: comparison between iliac crest and lumbar vertebra. J Bone Miner Res 6:689–696. https://doi.org/10.1002/jbmr.5650060706

Article  CAS  Google Scholar 

Garrahan NJ, Mellish RWE, Compston JE (1986) A new method for the two-dimensional analysis of bone structure in human iliac crest biopsies. J Microsc 142:341–349. https://doi.org/10.1111/j.1365-2818.1986.tb04289.x

Article  CAS  Google Scholar 

Huffer WE, Ruegg P, Zhu J-M, Lepoff RB (1994) Semiautomated methods for cancellous bone histomorphometry using a general-purpose video image analysis system. J Microsc 173:53–66. https://doi.org/10.1111/j.1365-2818.1994.tb03427.x

Article  CAS  Google Scholar 

Woodbury LA, Woodbury NA, Wronski T, Jee WSS (1976) Preliminary studies on the use of the Quantimet-720 for the measurement of radiographs of bone sections. Int Nucl Inf Syst. https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=8302068

Hollinger JO, Gee SA (1981) Evaluation of the Parietal Bones in the Rat as a Specific Site for the Testing of Osteogenic Materials. A Simple Animal Model to Study Bone Implant Material. US Army Inst. Dent. Res. https://apps.dtic.mil/sti/citations/ADA107036

Wronski TJ, Cintrón M, Dann LM (1988) Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int 43:179–183. https://doi.org/10.1007/BF02571317

Article  CAS  Google Scholar 

Chow JWM, Jagger CJ, Chambers TJ (1993) Characterization of osteogenic response to mechanical stimulation in cancellous bone of rat caudal vertebrae. Am J Physiol - Endocrinol Metab. https://doi.org/10.1152/ajpendo.1993.265.2.e340

Article  Google Scholar 

Schwartz MP, Recker RR (1981) Comparison of surface density and volume of human iliac trabecular bone measured directly and by applied stereology. Calcif Tissue Int 33:561–565. https://doi.org/10.1007/BF02409492

Article  CAS  Google Scholar 

Parfitt AM, Rao DS, Stanciu J et al (1985) Irreversible bone loss in osteomalacia. comparison of radial photon absorptiometry with iliac bone histomorphometry during treatment. J Clin Invest 76:2403–2412. https://doi.org/10.1172/JCI112253

Article  CAS  Google Scholar 

Delmas PD, Fontanges E, Duboeuf F et al (1988) Comparison of bone mass measured by histomorphometry on iliac biopsy and by dual photon absorptiometry of the lumbar spine. Bone 9:209–213. https://doi.org/10.1016/8756-3282(88)90033-6

Article  CAS  Google Scholar 

Wright CDP, Vedi S, Garrahan NJ et al (1992) Combined inter-observer and inter-method variation in bone histomorphometry. Bone 13:205–208. https://doi.org/10.1016/8756-3282(92)90198-6

Article  CAS  Google Scholar 

Compston JE, Vedi S, Stellon AJ (1986) Inter-observer and intra-observer variation in bone histomorphometry. Calcif Tissue Int 38:67–70. https://doi.org/10.1007/BF02556831

Article  CAS  Google Scholar 

Parfitt AM, Drezner MK, Glorieux FH et al (1987) Bone histomorphometry: Standardization of nomenclature, symbols, and units: report of the asbmr histomorphometry nomenclature committee. J Bone Miner Res 2:595–610. https://doi.org/10.1002/jbmr.5650020617

Article  CAS  Google Scholar 

Martin I, Mastrogiacomo M, De Leo G et al (2002) Fluorescence microscopy imaging of bone for automated histomorphometry. Tissue Eng 8:847–852. https://doi.org/10.1089/10763270260424204

Article  Google Scholar 

Doube M, Klosowski MM, Arganda-Carreras I et al (2010) BoneJ: free and extensible bone image analysis in ImageJ. Bone 47:1076–1079. https://doi.org/10.1016/j.bone.2010.08.023

Article  Google Scholar 

Hyun Hong S (2012) Computer-automated static, dynamic and cellular bone histomorphometry. J Tissue Sci Eng 05:004. https://doi.org/10.4172/2157-7552.s1-004

Article  CAS  Google Scholar 

Egan KP, Brennan TA, Pignolo RJ (2012) Bone histomorphometry using free and commonly available software. Histopathology 61:1168–1173. https://doi.org/10.1111/j.1365-2559.2012.04333.x

Article  Google Scholar 

Domander R, Felder AA, Doube M (2021) BoneJ2 - refactoring established research software. Wellcome Open Res 6:1–21. https://doi.org/10.12688/wellcomeopenres.16619.2

Article  Google Scholar 

Van’t Hof RJ, Rose L, Bassonga E, Daroszewska A (2017) Open source software for semi-automated histomorphometry of bone resorption and formation parameters. Bone 99:69–79. https://doi.org/10.1016/j.bone.2017.03.051

Article  Google Scholar 

Emmanuel T, Brüel A, Thomsen JS et al (2021) Artificial intelligence-assisted identification and quantification of osteoclasts. MethodsX 8:101272. https://doi.org/10.1016/j.mex.2021.101272

Article  Google Scholar 

Cohen-Karlik E, Awida Z, Bergman A et al (2021) Quantification of osteoclasts in culture, powered by machine learning. Front Cell Dev Biol 9:1267. https://doi.org/10.3389/fcell.2021.674710

Article  Google Scholar 

Wang X, Kittaka M, He Y et al (2022) OC_Finder: osteoclast segmentation, counting, and classification using watershed and deep learning. Front Bioinforma 2:6. https://doi.org/10.3389/fbinf.2022.819570

Article  Google Scholar 

Rajpurkar P, Chen E, Banerjee O, Topol EJ (2022) AI in health and medicine. Nat Med 28:31–38. https://doi.org/10.1038/s41591-021-01614-0

Article  CAS  Google Scholar 

Gulshan V, Peng L, Coram M et al (2016) Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. J Am Med Assoc 316:2402–2410. https://doi.org/10.1001/jama.2016.17216

Article  Google Scholar 

Esteva A, Kuprel B, Novoa RA et al (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542:115–118. https://doi.org/10.1038/nature21056

Article  CAS  Google Scholar 

Rajpurkar P, Irvin J, Ball RL et al (2018) Deep learning for chest radiograph diagnosis: a retrospective comparison of the CheXNeXt algorithm to practicing radiologists. PLoS Med. https://doi.org/10.1371/journal.pmed.1002686

Article  Google Scholar 

Hannun AY, Rajpurkar P, Haghpanahi M et al (2019) Cardiologist-level arrhythmia detection and classification in ambulatory electrocardiograms using a deep neural network. Nat Med 25:65–69. https://doi.org/10.1038/s41591-018-0268-3

Article  CAS  Google Scholar 

Gomolin A, Netchiporouk E, Gniadecki R, Litvinov IV (2020) Artificial intelligence applications in dermatology: where do we stand? Front Med 7:100. https://doi.org/10.3389/fmed.2020.00100

Article  Google Scholar 

Huang P, Lin CT, Li Y et al (2019) Prediction of lung cancer risk at follow-up screening with low-dose CT: a training and validation study of a deep learning method. Lancet Digit Heal 1:e353–e362. https://doi.org/10.1016/S2589-7500(19)30159-1

Article  Google Scholar 

Wu N, Phang J, Park J et al (2020) Deep neural networks improve radiologists’ performance in breast cancer screening. IEEE Trans Med Imaging 39:1184–1194. https://doi.org/10.1109/TMI.2019.2945514

Article  Google Scholar 

McKinney SM, Sieniek M, Godbole V et al (2020) International evaluation of an AI system for breast cancer screening. Nature 577:89–94. https://doi.org/10.1038/s41586-019-1799-6

Article  CAS  Google Scholar 

Kather JN, Pearson AT, Halama N et al (2019) Deep learning can predict microsatellite instability directly from histology in gastrointestinal cancer. Nat Med 25:1054–1056. https://doi.org/10.1038/s41591-019-0462-y

Article  CAS  Google Scholar 

Campanella G, Hanna MG, Geneslaw L et al (2019) Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat Med 25:1301–1309. https://doi.org/10.1038/s41591-019-0508-1

Article  CAS  Google Scholar 

Bera K, Schalper KA, Rimm DL et al (2019) Artificial intelligence in digital pathology — new tools for diagnosis and precision oncology. Nat Rev Clin Oncol 16:703–715. https://doi.org/10.1038/s41571-019-0252-y

Article  Google Scholar 

Brent MB, Brüel A, Thomsen JS (2021) A systematic review of animal models of disuse-induced bone loss. Calcif Tissue Int 108:561–575. https://doi.org/10.1007/s00223-020-00799-9

Article  CAS  Google Scholar 

Brent MB (2021) Abaloparatide: a review of preclinical and clinical studies. Eur J Pharmacol 909:174409. https://doi.org/10.1016/j.ejphar.2021.174409

Article  CAS  Google Scholar 

Brent MB (2022) A review of the skeletal effects of exposure to high altitude and potential mechanisms for hypobaric hypoxia-induced bone loss. Bone 154:116258. https://doi.org/10.1016/j.bone.2021.116258

Article  CAS  Google Scholar 

Brent MB, Brüel A, Thomsen JS (2020) Animal models of disuse-induced bone loss: study protocol for a systematic review. Syst Rev 9:3. https://doi.org/10.1186/s13643-020-01441-3

Article  Google Scholar 

Emmanuel T, Mistegård J, Bregnhøj A et al (2021) Tissue-resident memory t cells in skin diseases: a systematic review. Int J Mol Sci 22:9004. https://doi.org/10.3390/ijms22169004

Article  CAS  Google Scholar 

Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to imagej: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

Article  CAS  Google Scholar 

Rueden CT, Schindelin J, Hiner MC et al (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinform 18:529. https://doi.org/10.1186/s12859-017-1934-z

Article  Google Scholar 

留言 (0)

沒有登入
gif