Proteomics to study cancer immunity and improve treatment

Wei SC, Duffy CR, Allison JP (2018) Fundamental mechanisms of immune checkpoint blockade therapy. Cancer Discov 8:1069–1086. https://doi.org/10.1158/2159-8290.CD-18-0367

Article  Google Scholar 

Met Ö, Jensen KM, Chamberlain CA et al (2019) Principles of adoptive T cell therapy in cancer. Semin Immunopathol 41:49–58. https://doi.org/10.1007/s00281-018-0703-z

Article  Google Scholar 

Hodi FS, Chiarion-Sileni V, Gonzalez R et al (2018) Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial. Lancet Oncol 19:1480–1492. https://doi.org/10.1016/S1470-2045(18)30700-9

Article  CAS  Google Scholar 

Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A (2017) Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell 168:707–723. https://doi.org/10.1016/j.cell.2017.01.017

Article  CAS  Google Scholar 

Draghi A, Chamberlain CA, Furness A, Donia M (2019) Acquired resistance to cancer immunotherapy. Semin Immunopathol 41:31–40. https://doi.org/10.1007/s00281-018-0692-y

Article  CAS  Google Scholar 

Schoenfeld AJ, Hellmann MD (2020) Acquired resistance to immune checkpoint inhibitors. Cancer Cell 37:443–455. https://doi.org/10.1016/j.ccell.2020.03.017

Article  CAS  Google Scholar 

Kalbasi A, Ribas A (2020) Tumour-intrinsic resistance to immune checkpoint blockade. Nat Rev Immunol 20:25–39. https://doi.org/10.1038/s41577-019-0218-4

Article  CAS  Google Scholar 

Peggs KS, Quezada SA, Allison JP (2008) Cell intrinsic mechanisms of T-cell inhibition and application to cancer therapy. Immunol Rev 224:141–165. https://doi.org/10.1111/j.1600-065X.2008.00649.x

Article  CAS  Google Scholar 

Galon J, Bruni D (2019) Approaches to treat immune hot, altered and cold tumours with combination immunotherapies. Nat Rev Drug Discov 18:197–218. https://doi.org/10.1038/s41573-018-0007-y

Article  CAS  Google Scholar 

Capone E, Iacobelli S, Sala G (2021) Role of galectin 3 binding protein in cancer progression: a potential novel therapeutic target. J Transl Med 19:405. https://doi.org/10.1186/s12967-021-03085-w

Article  CAS  Google Scholar 

Hugo W, Zaretsky JM, Sun L et al (2016) Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell 165:35–44. https://doi.org/10.1016/j.cell.2016.02.065

Article  CAS  Google Scholar 

Gokuldass A, Schina A, Lauss M et al (2021) Transcriptomic signatures of tumors undergoing T cell attack. Cancer Immunol Immunother. https://doi.org/10.1007/s00262-021-03015-1

Article  Google Scholar 

De Ponte Conti B, Miluzio A, Grassi F, et al (2021) mTOR-dependent translation drives tumor infiltrating CD8+ effector and CD4+ Treg cells expansion. Elife 10. https://doi.org/10.7554/eLife.69015

Martinez-Val A, Guzmán UH, Olsen JV (2022) Obtaining complete human proteomes. Annu Rev Genomics Hum Genet 23. https://doi.org/10.1146/annurev-genom-112921-024948

Alberts B, Bray D, Hopkin K, et al (2015) Essential cell biology, 4th ed. Garland Science, London, England

Tanaka K, Waki H, Ido Y et al (1988) Protein and polymer analyses up tom/z 100 000 by laser ionization time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 2:151–153. https://doi.org/10.1002/rcm.1290020802

Article  CAS  Google Scholar 

Qin W, Cho KF, Cavanagh PE, Ting AY (2021) Deciphering molecular interactions by proximity labeling. Nat Methods 18:133–143. https://doi.org/10.1038/s41592-020-01010-5

Article  CAS  Google Scholar 

Christopher JA, Stadler C, Martin CE, et al (2021) Subcellular proteomics. Nat Rev Methods Primers 1. https://doi.org/10.1038/s43586-021-00029-y

Riley NM, Coon JJ (2016) Phosphoproteomics in the age of rapid and deep proteome profiling. Anal Chem 88:74–94. https://doi.org/10.1021/acs.analchem.5b04123

Article  CAS  Google Scholar 

Akimov V, Barrio-Hernandez I, Hansen SVF et al (2018) UbiSite approach for comprehensive mapping of lysine and N-terminal ubiquitination sites. Nat Struct Mol Biol 25:631–640. https://doi.org/10.1038/s41594-018-0084-y

Article  CAS  Google Scholar 

Hansen BK, Gupta R, Baldus L et al (2019) Analysis of human acetylation stoichiometry defines mechanistic constraints on protein regulation. Nat Commun 10:1055. https://doi.org/10.1038/s41467-019-09024-0

Article  CAS  Google Scholar 

Fenn JB, Mann M, Meng CK et al (1989) Electrospray ionization for mass spectrometry of large biomolecules. Science 246:64–71. https://doi.org/10.1126/science.2675315

Article  CAS  Google Scholar 

Purvine S, Eppel J-T, Yi EC, Goodlett DR (2003) Shotgun collision-induced dissociation of peptides using a time of flight mass analyzer. Proteomics 3:847–850. https://doi.org/10.1002/pmic.200300362

Article  CAS  Google Scholar 

Eng JK, McCormack AL, Yates JR (1994) An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database. J Am Soc Mass Spectrom 5:976–989. https://doi.org/10.1016/1044-0305(94)80016-2

Article  CAS  Google Scholar 

Beck L, Harel M, Yu S et al (2021) Clinical proteomics of metastatic melanoma reveals profiles of organ specificity and treatment resistance. Clin Cancer Res 27:2074–2086. https://doi.org/10.1158/1078-0432.CCR-20-3752

Article  CAS  Google Scholar 

Buczak K, Kirkpatrick JM, Truckenmueller F et al (2020) Spatially resolved analysis of FFPE tissue proteomes by quantitative mass spectrometry. Nat Protoc 15:2956–2979. https://doi.org/10.1038/s41596-020-0356-y

Article  CAS  Google Scholar 

Aran D, Hu Z, Butte AJ (2017) xCell: Digitally portraying the tissue cellular heterogeneity landscape. Genome Biol 18:1–14. https://doi.org/10.1186/s13059-017-1349-1

Article  CAS  Google Scholar 

Satpathy S, Krug K, Jean Beltran PM et al (2021) A proteogenomic portrait of lung squamous cell carcinoma. Cell 184:4348-4371.e40. https://doi.org/10.1016/j.cell.2021.07.016

Article  CAS  Google Scholar 

Lehtiö J, Arslan T, Siavelis I et al (2021) Proteogenomics of non-small cell lung cancer reveals molecular subtypes associated with specific therapeutic targets and immune-evasion mechanisms. Nat Cancer 2:1224–1242. https://doi.org/10.1038/s43018-021-00259-9

Article  CAS  Google Scholar 

Myers SA, Rhoads A, Cocco AR et al (2019) Streamlined protocol for deep proteomic profiling of FAC-sorted cells and its application to freshly isolated murine immune cells. Mol Cell Proteomics 18:995–1009. https://doi.org/10.1074/mcp.RA118.001259

Article  CAS  Google Scholar 

Amon S, Meier-Abt F, Gillet LC et al (2019) Sensitive quantitative proteomics of human hematopoietic stem and progenitor cells by data-independent acquisition mass spectrometry. Mol Cell Proteomics 18:1454–1467. https://doi.org/10.1074/mcp.TIR119.001431

Article  CAS  Google Scholar 

Tsai S, McOlash L, Palen K, et al (2018) Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 18. https://doi.org/10.1186/s12885-018-4238-4

Andersen R, Borch TH, Draghi A et al (2018) T cells isolated from patients with checkpoint inhibitor-resistant melanoma are functional and can mediate tumor regression. Ann Oncol 29:1575–1581. https://doi.org/10.1093/annonc/mdy139

Article  CAS  Google Scholar 

Tanzer MC, Bludau I, Stafford CA et al (2021) Phosphoproteome profiling uncovers a key role for CDKs in TNF signaling. Nat Commun 12:6053. https://doi.org/10.1038/s41467-021-26289-6

Article  CAS  Google Scholar 

Bartok O, Pataskar A, Nagel R et al (2021) Anti-tumour immunity induces aberrant peptide presentation in melanoma. Nature 590:332–337. https://doi.org/10.1038/s41586-020-03054-1

Article  CAS  Google Scholar 

Pataskar A, Champagne J, Nagel R et al (2022) Tryptophan depletion results in tryptophan-to-phenylalanine substitutants. Nature. https://doi.org/10.1038/s41586-022-04499-2

Article  Google Scholar 

Celis-Gutierrez J, Blattmann P, Zhai Y et al (2019) Quantitative interactomics in primary T cells provides a rationale for concomitant PD-1 and BTLA coinhibitor blockade in cancer immunotherapy. Cell Rep 27:3315-3330.e7. https://doi.org/10.1016/j.celrep.2019.05.041

Article  CAS  Google Scholar 

Boucherit N, Gorvel L, Olive D (2020) 3D tumor models and their use for the testing of immunotherapies. Front Immunol 11:603640. https://doi.org/10.3389/fimmu.2020.603640

Article  CAS  Google Scholar 

Chong C, Coukos G, Bassani-Sternberg M (2022) Identification of tumor antigens with immunopeptidomics. Nat Biotechnol 40:175–188. https://doi.org/10.1038/s41587-021-01038-8

Article  CAS  Google Scholar 

Zhao Q, Laverdure J-P, Lanoix J, et al (2020) Proteogenomics uncovers a vast repertoire of shared tumor-specific antigens in ovarian cancer. Cancer Immunology Research canimm.0541.2019. https://doi.org/10.1158/2326-6066.cir-19-0541

Tran E, Robbins PF, Rosenberg SA (2017) “Final common pathway” of human cancer immunotherapy: targeting random somatic mutations. Nat Immunol 18:255–262. https://doi.org/10.1038/ni.3682

Article  CAS  Google Scholar 

Bassani-Sternberg M, Bräunlein E, Klar R et al (2016) Direct identification of clinically relevant neoepitopes presented on native human melanoma tissue by mass spectrometry. Nat Commun 7:13404. https://doi.org/10.1038/ncomms13404

Article  CAS  Google Scholar 

Chong C, Müller M, Pak H et al (2020) Integrated proteogenomic deep sequencing and analytics accurately identify non-canonical peptides in tumor immunopeptidomes. Nat Commun 11:1293. https://doi.org/10.1038/s41467-020-14968-9

Article  CAS  Google Scholar 

Sarkizova S, Klaeger S, Le PM et al (2020) A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nat Biotechnol 38:199–209. https://doi.org/10.1038/s41587-019-0322-9

Article  CAS  Google Scholar 

Anderson NL (2010) The clinical plasma proteome: a survey of clinical assays for proteins in plasma and serum. Clin Chem 56:177–185. https://doi.org/10.1373/clinchem.2009.126706

Article  CAS  Google Scholar 

Barichello T, Generoso JS, Singer M, Dal-Pizzol F (2022) Biomarkers for sepsis: more than just fever and leukocytosis-a narrative review. Crit Care 26:14. https://doi.org/10.1186/s13054-021-03862-5

Article  Google Scholar 

Lauwyck J, Beckwée A, Santens A et al (2021) C-reactive protein as a biomarker for immune-related adverse events in melanoma patients treated with immune checkpoint inhibitors in the adjuvant setting. Melanoma Res 31:371–377. https://doi.org/10.1097/CMR.0000000000000748

Article  CAS 

留言 (0)

沒有登入
gif