Pathophysiology of SARS-CoV-2 Infection of Nasal Respiratory and Olfactory Epithelia and Its Clinical Impact

Cascella M, Rajnik M, Aleem A, Dulebohn SC, Di Napoli R. Features, evaluation, and treatment of coronavirus (COVID-19). StatPearls. Treasure Island (FL). 2022.

World Health Organization. WHO coronavirus (COVID-19) dashboard. 2022. Available from: https://covid19.who.int/. Accessed 20 Sept 2022.

Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E. A comprehensive review of COVID-19 characteristics. Biol Proced Online. 2020;22:19. https://doi.org/10.1186/s12575-020-00128-2.

Article  CAS  Google Scholar 

Pang KW, Chee J, Subramaniam S, Ng CL. Frequency and clinical utility of olfactory dysfunction in COVID-19: a systematic review and meta-analysis. Curr Allergy Asthma Rep. 2020;20(12):76. https://doi.org/10.1007/s11882-020-00972-y.

Article  CAS  Google Scholar 

Singhal T. A review of coronavirus disease-2019 (COVID-19). Indian J Pediatr. 2020;87(4):281–6. https://doi.org/10.1007/s12098-020-03263-6.

Article  Google Scholar 

Malik YA. Properties of Coronavirus and SARS-CoV-2. Malays J Pathol. 2020;42(1):3–11.

CAS  Google Scholar 

Yan R, Zhang Y, Li Y, Xia L, Guo Y, Zhou Q. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–8. https://doi.org/10.1126/science.abb2762.

Article  Google Scholar 

Brian DA, Baric RS. Coronavirus genome structure and replication. Curr Top Microbiol Immunol. 2005;287:1–30. https://doi.org/10.1007/3-540-26765-4_1.

Article  CAS  Google Scholar 

Siu YL, Teoh KT, Lo J, Chan CM, Kien F, Escriou N, et al. The M, E, and N structural proteins of the severe acute respiratory syndrome coronavirus are required for efficient assembly, trafficking, and release of virus-like particles. J Virol. 2008;82(22):11318–30. https://doi.org/10.1128/JVI.01052-08.

Article  CAS  Google Scholar 

Heald-Sargent T, Gallagher T. Ready, set, fuse! The coronavirus spike protein and acquisition of fusion competence. Viruses. 2012;4(4):557–80. https://doi.org/10.3390/v4040557.

Article  CAS  Google Scholar 

Cheng YW, Chao TL, Li CL, Chiu MF, Kao HC, Wang SH, et al. Furin inhibitors block SARS-CoV-2 spike protein cleavage to suppress virus production and cytopathic effects. Cell Rep. 2020;33(2):108254. https://doi.org/10.1016/j.celrep.2020.108254.

Article  CAS  Google Scholar 

Peacock TP, Goldhill DH, Zhou J, Baillon L, Frise R, Swann OC, et al. The furin cleavage site in the SARS-CoV-2 spike protein is required for transmission in ferrets. Nat Microbiol. 2021;6(7):899–909. https://doi.org/10.1038/s41564-021-00908-w.

Article  CAS  Google Scholar 

Ou X, Liu Y, Lei X, Li P, Mi D, Ren L, et al. Characterization of spike glycoprotein of SARS-CoV-2 on virus entry and its immune cross-reactivity with SARS-CoV. Nat Commun. 2020;11(1):1620. https://doi.org/10.1038/s41467-020-15562-9.

Article  CAS  Google Scholar 

Gengler I, Wang JC, Speth MM, Sedaghat AR. Sinonasal pathophysiology of SARS-CoV-2 and COVID-19: a systematic review of the current evidence. Laryngoscope Investig Otolaryngol. 2020;5(3):354–9. https://doi.org/10.1002/lio2.384.

Article  Google Scholar 

Shang J, Ye G, Shi K, Wan Y, Luo C, Aihara H, et al. Structural basis of receptor recognition by SARS-CoV-2. Nature. 2020;581(7807):221–4. https://doi.org/10.1038/s41586-020-2179-y.

Article  CAS  Google Scholar 

Turner AJ. ACE2 cell biology, regulation, and physiological functions. The Protective Arm of the Renin Angiotensin System. 2015:24.

Beyerstedt S, Casaro EB, Rangel EB. COVID-19: angiotensin-converting enzyme 2 (ACE2) expression and tissue susceptibility to SARS-CoV-2 infection. Eur J Clin Microbiol Infect Dis. 2021;40(5):905–19. https://doi.org/10.1007/s10096-020-04138-6.

Article  CAS  Google Scholar 

Ord M, Faustova I, Loog M. The sequence at Spike S1/S2 site enables cleavage by furin and phospho-regulation in SARS-CoV2 but not in SARS-CoV1 or MERS-CoV. Sci Rep. 2020;10(1):16944. https://doi.org/10.1038/s41598-020-74101-0.

Article  CAS  Google Scholar 

Kleine-Weber H, Elzayat MT, Hoffmann M, Pohlmann S. Functional analysis of potential cleavage sites in the MERS-coronavirus spike protein. Sci Rep. 2018;8(1):16597. https://doi.org/10.1038/s41598-018-34859-w.

Article  CAS  Google Scholar 

Gomez SA, Rojas-Valencia N, Gomez S, Egidi F, Cappelli C, Restrepo A. Binding of SARS-CoV-2 to cell receptors: a tale of molecular evolution. ChemBioChem. 2021;22(4):724–32. https://doi.org/10.1002/cbic.202000618.

Article  CAS  Google Scholar 

Khan M, Adil SF, Alkhathlan HZ, Tahir MN, Saif S, Khan M, et al. COVID-19: a global challenge with old history, epidemiology and progress so far. Molecules. 2020;26(1). https://doi.org/10.3390/molecules26010039.

World Health Organization. WHO recommendations to reduce risk of transmission of emerging pathogens from animals to humans in live animal markets or animal product markets. 2022. Available from: https://www.who.int/publications/i/item/10665332217. Accessed 20 Sept 2022.

Xin H, Wong JY, Murphy C, Yeung A, Taslim Ali S, Wu P, et al. The incubation period distribution of coronavirus disease 2019: a systematic review and meta-analysis. Clin Infect Dis. 2021;73(12):2344–52. https://doi.org/10.1093/cid/ciab501.

Article  CAS  Google Scholar 

Mehraeen E, Salehi MA, Behnezhad F, Moghaddam HR, SeyedAlinaghi S. Transmission modes of COVID-19: a systematic review. Infect Disord Drug Targets. 2021;21(6):e170721187995. https://doi.org/10.2174/1871526520666201116095934.

Article  CAS  Google Scholar 

Yao Y, Wang H, Liu Z. Expression of ACE2 in airways: Implication for COVID-19 risk and disease management in patients with chronic inflammatory respiratory diseases. Clin Exp Allergy. 2020;50(12):1313–24. https://doi.org/10.1111/cea.13746.

Article  CAS  Google Scholar 

Bridges JP, Vladar EK, Huang H, Mason RJ. Respiratory epithelial cell responses to SARS-CoV-2 in COVID-19. Thorax. 2022;77(2):203–9. https://doi.org/10.1136/thoraxjnl-2021-217561.

Article  Google Scholar 

•• Khan M, Yoo SJ, Clijsters M, Backaert W, Vanstapel A, Speleman K, et al. Visualizing in deceased COVID-19 patients how SARS-CoV-2 attacks the respiratory and olfactory mucosae but spares the olfactory bulb. Cell. 2021;184(24):5932–49 e15. https://doi.org/10.1016/j.cell.2021.10.027. An important study utilizing ultrasensitive single-molecule fluorescence in situ RNA hybridization with fluorescence immunohistochemistry to investigate target cells of SARS-CoV-2 in the nasal epithelium.

Article  CAS  Google Scholar 

Chee J, Loh WS, Liu Z, Mullol J, Wang Y. Clinical-pathological correlation of the pathophysiology and mechanism of action of COVID-19 - a primer for clinicians. Curr Allergy Asthma Rep. 2021;21(6):38. https://doi.org/10.1007/s11882-021-01015-w.

Article  CAS  Google Scholar 

Booth CM, Matukas LM, Tomlinson GA, Rachlis AR, Rose DB, Dwosh HA, et al. Clinical features and short-term outcomes of 144 patients with SARS in the greater Toronto area. JAMA. 2003;289(21):2801–9. https://doi.org/10.1001/jama.289.21.JOC30885.

Article  CAS  Google Scholar 

Weiss SR. Forty years with coronaviruses. J Exp Med. 2020;217(5). https://doi.org/10.1084/jem.20200537.

Elsaesser R, Paysan J. The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells. BMC Neurosci. 2007;8(Suppl 3):S1. https://doi.org/10.1186/1471-2202-8-S3-S1.

Article  CAS  Google Scholar 

Trotier D, Bensimon JL, Herman P, Tran Ba Huy P, Doving KB, Eloit C. Inflammatory obstruction of the olfactory clefts and olfactory loss in humans: a new syndrome? Chem Senses. 2007;32(3):285–92. https://doi.org/10.1093/chemse/bjl057.

Article  Google Scholar 

Liang F, Wang Y. COVID-19 anosmia: high prevalence, plural neuropathogenic mechanisms, and scarce neurotropism of SARS-CoV-2? Viruses. 2021;13(11). https://doi.org/10.3390/v13112225.

Hahn I, Scherer PW, Mozell MM. Velocity profiles measured for airflow through a large-scale model of the human nasal cavity. J Appl Physiol (1985). 1993;75(5):2273–87. https://doi.org/10.1152/jappl.1993.75.5.2273.

Article  CAS  Google Scholar 

Schwob JE. Neural regeneration and the peripheral olfactory system. Anat Rec. 2002;269(1):33–49. https://doi.org/10.1002/ar.10047.

Article  Google Scholar 

Bryche B, St Albin A, Murri S, Lacote S, Pulido C, Ar Gouilh M, et al. Massive transient damage of the olfactory epithelium associated with infection of sustentacular cells by SARS-CoV-2 in golden Syrian hamsters. Brain Behav Immun. 2020;89:579–86. https://doi.org/10.1016/j.bbi.2020.06.032.

Article  CAS  Google Scholar 

Kirschenbaum D, Imbach LL, Ulrich S, Rushing EJ, Keller E, Reimann RR, et al. Inflammatory olfactory neuropathy in two patients with COVID-19. Lancet. 2020;396(10245):166. https://doi.org/10.1016/S0140-6736(20)31525-7.

Article  CAS  Google Scholar 

Xydakis MS, Albers MW, Holbrook EH, Lyon DM, Shih RY, Frasnelli JA, et al. Post-viral effects of COVID-19 in the olfactory system and their implications. Lancet Neurol. 2021;20(9):753–61. https://doi.org/10.1016/S1474-4422(21)00182-4.

Article  CAS  Google Scholar 

Bilinska K, Jakubowska P, Von Bartheld CS, Butowt R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: identification of cell types and trends with age. ACS Chem Neurosci. 2020;11(11):1555–62. https://doi.org/10.1021/acschemneuro.0c00210.

Article  CAS  Google Scholar 

Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan M, Jr., et al. Elevated ACE-2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. Eur Respir J. 2020;56(3). https://doi.org/10.1183/13993003.01948-2020.

Meinhardt J, Radke J, Dittmayer C, Franz J, Thomas C, Mothes R, et al. Olfactory transmucosal SARS-CoV-2 invasion as a port of central nervous system entry in individuals with COVID-19. Nat Neurosci. 2021;24(2):168–75. https://doi.org/10.1038/s41593-020-00758-5.

Article  CAS  Google Scholar 

Marin C, Tubita V, Langdon C, Fuentes M, Rojas-Lechuga MJ, Valero A, et al. ACE2 downregulation in olfactory mucosa: eosinophilic rhinosinusitis as COVID-19 protective factor? Allergy. 2021;76(9):2904–7. https://doi.org/10.1111/all.14904.

Article  CAS  Google Scholar 

Torabi A, Mohammadbagheri E, Akbari Dilmaghani N, Bayat AH, Fathi M, Vakili K, et al. Proinflammatory cytokines in the olfactory mucosa result in COVID-19 induced anosmia. ACS Chem Neurosci. 2020;11(13):1909–13. https://doi.org/10.1021/acschemneuro.0c00249.

Article  CAS  Google Scholar 

Lane AP, Turner J, May L, Reed R. A genetic model of chronic rhinosinusitis-associated olfactory inflammation reveals reversible functional impairment and dramatic neuroepithelial reorganization. J Neurosci. 2010;30(6):2324–9. https://doi.org/10.1523/JNEUROSCI.4507-09.2010.

Article  CAS  Google Scholar 

Parma V, Ohla K, Veldhuizen MG, Niv MY, Kelly CE, Bakke AJ, et al. More than smell-COVID-19 is associated with severe impairment of smell, taste, and chemesthesis. Chem Senses. 2020;45(7):609–22. https://doi.org/10.1093/chemse/bjaa041.

Article  CAS  Google Scholar 

Cantuti-Castelvetri L, Ojha R, Pedro LD, Djannatian M, Franz J, Kuivanen S, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science. 2020;370(6518):856–60. https://doi.org/10.1126/science.abd2985.

Article  CAS  Google Scholar 

Fodoulian L, Tuberosa J, Rossier D, Boillat M, Kan C, Pauli V, et al. SARS-CoV-2 receptors and entry genes are expressed in the human olfactory neuroepithelium and brain. iScience. 2020;23(12):101839. https://doi.org/10.1016/j.isci.2020.101839.

Article  CAS 

留言 (0)

沒有登入
gif