Fibrosis in Liver and Pancreas: a Review on Pathogenic Significance, Diagnostic Options, and Current Management Strategies

Wick, Georg, Cecilia Grundtman, Christina Mayerl, Thomas-Florian Wimpissinger, Johann Feichtinger, Bettina Zelger, Roswitha Sgonc, and Dolores Wolfram. 2013. "The immunology of fibrosis." Annual review of immunology 31, 1: 107–35.

Wynn, T.A. 2004. Fibrotic disease and the TH1/TH2 paradigm. Nature Reviews Immunology 4: 583–594.

Article  Google Scholar 

Henderson, N.C., F. Rieder, and T.A. Wynn. 2020. Fibrosis: From mechanisms to medicines. Nature 587: 555–566.

Article  Google Scholar 

Liu, Y. 2010. New insights into epithelial-mesenchymal transition in kidney fibrosis. Journal of the American Society of Nephrology 21: 212–222.

Article  Google Scholar 

Lebleu, V.S., et al. 2013. Origin and function of myofibroblasts in kidney fibrosis. Nature Medicine 19: 1047–1053.

Article  Google Scholar 

Krenning, G., E.M. Zeisberg, and R. Kalluri. 2010. The origin of fibroblasts and mechanism of cardiac fibrosis. Journal of Cellular Physiology 225: 631–637.

Article  Google Scholar 

Goldsmith, E.C., et al. 2004. Organization of fibroblasts in the heart. Developmental Dynamics 230: 787–794.

Article  Google Scholar 

Lakatos, H. F. et al. 2007. The role of PPARs in lung fibrosis. PPAR Research 2007.

Hardie, W.D., S.W. Glasser, and J.S. Hagood. 2009. Emerging concepts in the pathogenesis of lung fibrosis. American Journal of Pathology 175: 3–16.

Article  Google Scholar 

Kelly, M., M. Kolb, P. Bonniaud, and J. Gauldie. 2005. Re-evaluation of fibrogenic cytokines in lung fibrosis. Current Pharmaceutical Design 9: 39–49.

Article  Google Scholar 

Shroff, A., A. Mamalis, and J. Jagdeo. 2014. Oxidative stress and skin fibrosis. Curr. Pathobiol. Rep. 2: 257–267.

Article  Google Scholar 

Jinnin, M. 2010. Mechanisms of skin fibrosis in systemic sclerosis. Journal of Dermatology 37: 11–25.

Article  Google Scholar 

Lim, Y.S., and W.R. Kim. 2008. The global impact of hepatic fibrosis and end-stage liver disease. Clinics in Liver Disease 12: 733–746.

Article  Google Scholar 

Bataller, R., and B. Gao. 2015. Liver fibrosis in alcoholic liver disease. Seminars in Liver Disease 35: 146–156.

Article  Google Scholar 

Aydin, M.M., and K.C. Akcali. 2018. Liver fibrosis. Turkish. Journal of Gastroenterology 29: 14–21.

Google Scholar 

Abe, H., et al. 2016. Effective prevention of liver fibrosis by liver-targeted hydrodynamic gene delivery of matrix metalloproteinase-13 in a rat liver fibrosis model. Mol. Ther. - Nucleic Acids 5: e276.

Article  Google Scholar 

Yang, Y.M., S.Y. Kim, and E. Seki. 2019. Inflammation and liver cancer: Molecular mechanisms and therapeutic targets. Seminars in Liver Disease 39: 26–42.

Article  Google Scholar 

Apte, M.V., and J.S. Wilson. 2012. Dangerous liaisons: Pancreatic stellate cells and pancreatic cancer cells. Journal of Gastroenterology and Hepatology 27: 69–74.

Article  Google Scholar 

Masamune, A., T. Watanabe, K. Kikuta, and T. Shimosegawa. 2009. Roles of pancreatic stellate cells in pancreatic inflammation and fibrosis. Clinical Gastroenterology and Hepatology 7: S48–S54.

Article  Google Scholar 

Apte, M.V., and J.S. Wilson. 2004. Mechanisms of pancreatic fibrosis. Digestive Diseases 22: 273–279.

Article  Google Scholar 

Omary, M.B., A. Lugea, A.W. Lowe, and S.J. Pandol. 2007. The pancreatic stellate cell: A star on the rise in pancreatic diseases. The Journal of Clinical Investigation 117: 50–59.

Article  Google Scholar 

Tang, D., et al. 2018. Galectin-1 expression in activated pancreatic satellite cells promotes fibrosis in chronic pancreatitis/pancreatic cancer via the TGF-β1/Smad pathway. Oncology Reports 39: 1347–1355.

Google Scholar 

Apte, M.V., et al. 1998. Periacinar stellate shaped cells in rat pancreas: Identification, isolation, and culture. Gut 43: 128–133.

Article  Google Scholar 

Phillips, P. 2012. Pancreatic stellate cells and fibrosis. In eds. Paul J. Grippo and Hidayatullah G. Munshi. Trivandrum (India).

Phillips, P.A., et al. 2003. Rat pancreatic stellate cells secrete matrix metalloproteinases: Implications for extracellular matrix turnover. Gut 52: 275–282.

Article  Google Scholar 

2697b11224f60f415eff7b000c3cb9cdc3bde2a4 @ https://www.ncbi.nlm.nih.gov/.

Seki, E., and D.A. Brenner. 2015. Recent advancement of molecular mechanisms of liver fibrosis. Journal of Hepato-Biliary-Pancreatic Sciences 22: 512–518.

Article  Google Scholar 

Masamune, A. et al. 2008. Hypoxia stimulates pancreatic stellate cells to induce fibrosis and angiogenesis in pancreatic cancer. American Journal of Physiology - Gastrointestinal and Liver Physiology 295: 709–717.

Kim, N. et al. 2009. Formation of vitamin A lipid droplets in pancreatic stellate cells requires albumin. 1382–1390. https://doi.org/10.1136/gut.2008.170233.

Shimizu, K. 2008. Mechanisms of pancreatic fibrosis and applications to the treatment of chronic pancreatitis. Journal of Gastroenterology 43: 823–832.

Article  Google Scholar 

Zhang, J.-M., and J. An. 2009. Cytokines, inflammation and pain. Int Anesth. Clin. 69: 482–489.

Google Scholar 

Meyer-Ingold, W., and W. Eichner. 1995. Platelet-derived growth factor. Cell Biology International 19: 389–398.

Article  Google Scholar 

Poole, K.E.S., and J. Reeve. 2005. Parathyroid hormone – a bone anabolic and catabolic agent. Current Opinion in Pharmacology 5: 612–617.

Article  Google Scholar 

Chen, P.H., X. Chen, and X. He. 2013. Platelet-derived growth factors and their receptors: Structural and functional perspectives. Biochimica et Biophysica Acta 1834: 2176–2186.

Article  Google Scholar 

Xue, J., et al. 2015. Alternatively activated macrophages promote pancreatic fibrosis in chronic pancreatitis. Nature Communications 6: 1–11.

Article  Google Scholar 

Apte, M.V., et al. 1999. Pancreatic stellate cells are activated by proinflammatory cytokines: Implications for pancreatic fibrogenesis. Gut 44: 534–541.

Article  Google Scholar 

Borkham-Kamphorst, E., and R. Weiskirchen. 2016. The PDGF system and its antagonists in liver fibrosis. Cytokine & Growth Factor Reviews 28: 53–61.

Article  Google Scholar 

Kordes, C., S. Brookmann, D. Häussinger, and H. Klonowski-Stumpe. 2005. Differential and synergistic effects of platelet-derived growth factor-BB and transforming growth factor-β1 on activated pancreatic stellate cells. Pancreas 31: 156–167.

Article  Google Scholar 

Haber, P.S., et al. 1999. Activation of pancreatic stellate cells in human and experimental pancreatic fibrosis. American Journal of Pathology 155: 1087–1095.

Article  Google Scholar 

Ramadori, G., and T. Armbrust. 2001. Cytokines in the liver. European Journal of Gastroenterology and Hepatology 13: 777–784.

Article  Google Scholar 

Friedman, S.L. 1999. Cytokines and fibrogenesis. Seminars in Liver Disease 19: 129–140.

Article  Google Scholar 

Mews, P., et al. 2002. Pancreatic stellate cells respond to inflammatory cytokines: Potential role in chronic pancreatitis. Gut 50: 535–541.

Article  Google Scholar 

Formela, L.J., S.W. Galloway, and A.N. Kingsnorth. 1995. Inflammatory mediators in acute pancreatitis. British Journal of Surgery 82: 6–13.

Article  Google Scholar 

Norman, J. 1998. The role of cytokines in the pathogenesis of acute pancreatitis. American Journal of Surgery 175: 76–83.

Article  Google Scholar 

Vaccaro, M.I., et al. 2000. Pancreatic acinar cells submitted to stress activate TNF-alpha gene expression. Biochemical and Biophysical Research Communications 268: 485–490.

Article  Google Scholar 

Matsuoka, M., N.T. Pham, and H. Tsukamoto. 1989. Differential effects of interleukin-1 alpha, tumor necrosis factor alpha, and transforming growth factor beta 1 on cell proliferation and collagen formation by cultured fat-storing cells. Liver 9: 71–78.

Article  Google Scholar 

Zheng, M., H. Li, L. Sun, D.R. Brigstock, and R. Gao. 2021. Interleukin-6 participates in human pancreatic stellate cell activation and collagen I production via TGF-β1/Smad pathway. Cytokine 143: 155536.

Article  Google Scholar 

Yang, Y.M., and E. Seki. 2015. TNFα in liver fibrosis. Curr. Pathobiol. Rep. 3: 253–261.

Article  Google Scholar 

Xiang, D.-M., et al. 2018. The HLF/IL-6/STAT3 feedforward circuit drives hepatic stellate cell activation to promote liver fibrosis. Gut 67: 1704–1715.

Article  Google Scholar 

McCarroll, J.A., et al. 2004. Pancreatic stellate cell migration: Role of the phosphatidylinositol 3-kinase (PI3-kinase) pathway. Biochemical Pharmacology 67: 1215–1225.

Article  Google Scholar 

Masamune, A., M. Satoh, K. Kikuta, N. Suzuki, and T. Shimosegawa. 2005. Activation of JAK-STAT pathway is required for platelet-derived growth factor-induced proliferation of pancreatic stellate cells. World Journal of Gastroenterology 11: 3385–3391.

Article  Google Scholar 

Dooley, S., and P. Ten Dijke. 2012. TGF-β in progression of liver disease. Cell and Tissue Research 347: 245–256.

Article  Google Scholar 

Reif, S., et al. 2003. The role of focal adhesion kinase-phosphatidylinositol 3-kinase-Akt signaling in hepatic stellate cell proliferation and type I collagen expression. Journal of Biological Chemistry 278: 8083–8090.

Article  Google Scholar 

Shek, F.W., and R.C. Benyon. 2004. How can transforming growth factor beta be targeted usefully to combat liver fibrosis? European Journal of Gastroenterology and Hepatology 16: 123–126.

Article  Google Scholar 

Molina, M. F., Abdelnabi, M. N., Fabre, T. and Shoukry, N. H. 2019. Type 3 cytokines in liver fibrosis and liver cancer. Cytokine 124: 0–1.

Ninomiya-Tsuji, J., et al. 1999. The kinase TAK1 can activate the NIK-IκB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 398: 252–256.

Article  Google Scholar 

Tsukamoto, H. 1999. Cytokine regulation of hepatic stellate cells in liver fibrosis. Alcoholism, Clinical and Experimental Research 23: 911–916.

Article  Google Scholar 

Zelová, H., and J. Hošek. 2013. TNF-α signalling and inflammation: Interactions between old acquaintances. Inflammation Research 62: 641–651.

Article  Google Scholar 

Apte, M.V., R.C. Pirola, and J.S. Wilson. 2006. Battle-scarred pancreas: Role of alcohol and pancreatic stellate cells in pancreatic fibrosis. Journal of Gastroenterology and Hepatology 21: 97–101.

Article  Google Scholar 

Manning, D. S. 2008. Diagnosis and quantitation of fibrosis. 1670–1681.

Castera, L., and M. Pinzani. 2010. Biopsy and non-invasive methods for the diagnosis of liver fibrosis: Does it take two to tango? Gut 59: 861–866.

留言 (0)

沒有登入
gif