A proteomic profile of the healthy human placenta

Mossman HW. Comparative morphogenesis of the fetal membranes and accessory uterine structures. Placenta. 1991;12(1):1–5.

Article  CAS  Google Scholar 

Burton GJ, Fowden AL. The placenta: a multifaceted, transient organ. Philos Trans R Soc Biol Sci. 2015;370(1663):20140066.

Article  Google Scholar 

Khorami Sarvestani S, Shojaeian S, Vanaki N, Ghresi-Fard B, Amini M, Gilany K, et al. Proteome profiling of human placenta reveals developmental stage-dependent alterations in protein signature. Clin Proteomics. 2021;18(1):18.

Article  CAS  Google Scholar 

Woods L, Perez-Garcia V, Hemberger M. Regulation of Placental Development and Its Impact on Fetal Growth—New Insights From Mouse Models. Front Endocrinol. 2018;9:570.

Article  Google Scholar 

Maltepe E, Penn AA. Development, Function, and Pathology of the Placenta. In: Gleason CA, Juul SE, editors. Avery’s Diseases of the Newborn. 10th ed. Philadelphia: Elsevier; 2018. p. 40- 60.e8.

Chapter  Google Scholar 

Holder B, Aplin JD, Gomez-Lopez N, Heazell AEP, James JL, Jones CJP, et al. ‘Fetal side’ of the placenta: anatomical mis-annotation of carbon particle ‘transfer’ across the human placenta. Nat Commun. 2021;12(1):7049.

Article  CAS  Google Scholar 

Bové H, Bongaerts E, Slenders E, Bijnens EM, Saenen ND, Gyselaers W, et al. Ambient black carbon particles reach the fetal side of human placenta. Nat Commun. 2019;10(1):3866.

Article  Google Scholar 

Burton GJ, Jauniaux E. What is the placenta? American journal of obstetrics and gynecology. 2015;213(4):S6. e1-S6. e4.

Roberts RM, Green JA, Schulz LC. The evolution of the placenta. Reproduction (Cambridge, England). 2016;152(5):R179–89.

Article  CAS  Google Scholar 

Wang Y, Zhao S. Integrated Systems Physiology: from Molecules to Function to Disease. Vascular Biology of the Placenta. San Rafael (CA): Morgan & Claypool Life Sciences. Copyright © 2010 by Morgan & Claypool Life Sciences.; 2010

Fox H. Aging of the placenta. Arch Dis Child Fetal Neonatal Ed. 1997;77(3):F171–5.

Article  CAS  Google Scholar 

Manna S, McCarthy C, McCarthy FP. Placental Ageing in Adverse Pregnancy Outcomes: Telomere Shortening, Cell Senescence, and Mitochondrial Dysfunction. Oxid Med Cell Longev. 2019;2019:3095383.

Article  Google Scholar 

Sultana Z, Maiti K, Aitken J, Morris J, Dedman L, Smith R. Oxidative stress, placental ageing-related pathologies and adverse pregnancy outcomes. Am J Reprod Immunol. 2017;77(5): e12653.

Article  Google Scholar 

Law KP, Han TL, Tong C, Baker PN. Mass spectrometry-based proteomics for pre-eclampsia and preterm birth. Int J Mol Sci. 2015;16(5):10952–85.

Article  CAS  Google Scholar 

Nguyen TPH, Patrick CJ, Parry LJ, Familari M. Using proteomics to advance the search for potential biomarkers for preeclampsia: A systematic review and meta-analysis. PLoS ONE. 2019;14(4):e0214671.

Article  CAS  Google Scholar 

Burton GJ, Sebire NJ, Myatt L, Tannetta D, Wang YL, Sadovsky Y, et al. Optimising sample collection for placental research. Placenta. 2014;35(1):9–22.

Article  CAS  Google Scholar 

Burton DGA, Krizhanovsky V. Physiological and pathological consequences of cellular senescence. Cell Mol Life Sci. 2014;71(22):4373–86.

Article  CAS  Google Scholar 

English JA, Lopez LM, O’Gorman A, Föcking M, Hryniewiecka M, Scaife C, et al. Blood-based protein changes in childhood are associated with increased risk for later psychotic disorder: evidence from a nested case-control study of the ALSPAC Longitudinal Birth Cohort. Schizophr Bull. 2018;44(2):297–306.

Article  Google Scholar 

Tyanova S, Temu T, Sinitcyn P, Carlson A, Hein MY, Geiger T, et al. The Perseus computational platform for comprehensive analysis of (prote)omics data. Nat Methods. 2016;13(9):731–40.

Article  CAS  Google Scholar 

Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A, et al. ClueGO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics (Oxford, England). 2009;25(8):1091–3.

Article  CAS  Google Scholar 

Mazein A, Ostaszewski M, Kuperstein I, Watterson S, Le Novère N, Lefaudeux D, et al. Systems medicine disease maps: community-driven comprehensive representation of disease mechanisms. Syst Biol Appl. 2018;4(1):21.

Article  Google Scholar 

Scheel J, Gupta S, Wolkenhauer O. NaviCenta: Navigate the placenta. Placenta. 2021;112: e35.

Article  Google Scholar 

Hoch M, Smita S, Cesnulevicius K, Lescheid D, Schultz M, Wolkenhauer O, et al. Network- and enrichment-based inference of phenotypes and targets from large-scale disease maps. Syst Biol Appl. 2022;8(1):13.

Article  CAS  Google Scholar 

Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, et al. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.

Article  Google Scholar 

Yim A, Koti P, Bonnard A, Marchiano F, Dürrbaum M, Garcia-Perez C, et al. mitoXplorer, a visual data mining platform to systematically analyze and visualize mitochondrial expression dynamics and mutations. Nucleic Acids Res. 2020;48(2):605–32.

Article  CAS  Google Scholar 

Rath S, Sharma R, Gupta R, Ast T, Chan C, Durham TJ, et al. MitoCarta3.0: an updated mitochondrial proteome now with sub-organelle localization and pathway annotations. Nucleic Acids Res. 2021;49(D1):D1541.

Article  CAS  Google Scholar 

Heberle H, Meirelles GV, da Silva FR, Telles GP, Minghim R. InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinformatics. 2015;16(1):169.

Article  Google Scholar 

Avelar RA, Ortega JG, Tacutu R, Tyler EJ, Bennett D, Binetti P, et al. A multidimensional systems biology analysis of cellular senescence in aging and disease. Genome Biol. 2020;21(1):91.

Article  CAS  Google Scholar 

Zhao M, Chen L, Qu H. CSGene: a literature-based database for cell senescence genes and its application to identify critical cell aging pathways and associated diseases. Cell Death Dis. 2016;7(1):e2053.

Article  CAS  Google Scholar 

Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912–4.

Article  CAS  Google Scholar 

Zhang X, Lan Y, Xu J, Quan F, Zhao E, Deng C, et al. Cell Marker: a manually curated resource of cell markers in human and mouse. Nucleic Acids Res. 2018;47(D1):D721–8.

Article  Google Scholar 

Burton GJ, Jauniaux E. Oxidative stress. Best Pract Res Clin Obstet Gynaecol. 2011;25(3):287–99.

Article  Google Scholar 

Burton GJ, Fowden AL. Review: The placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation. Placenta. 2012;33(Suppl):S23–7.

Article  Google Scholar 

Samokhvalov V, Ignatov V, Kondrashova M. Inhibition of Krebs cycle and activation of glyoxylate cycle in the course of chronological aging of Saccharomyces cerevisiae. Compensatory role of succinate oxidation Biochimie. 2004;86(1):39–46.

CAS  Google Scholar 

Wang H, Han L, Zhao G, Shen H, Wang P, Sun Z, et al. hnRNP A1 antagonizes cellular senescence and senescence-associated secretory phenotype via regulation of SIRT1 mRNA stability. Aging Cell. 2016;15(6):1063–73.

Article  CAS  Google Scholar 

Jia Q, Nie H, Yu P, Xie B, Wang C, Yang F, et al. HNRNPA1-mediated 3’ UTR length changes of HN1 contributes to cancer- and senescence-associated phenotypes. Aging (Albany NY). 2019;11(13):4407–37.

Article  CAS  Google Scholar 

Djouadi F, Bastin J. Mitochondrial Genetic Disorders: Cell Signaling and Pharmacological Therapies. Cells. 2019;8:4.

Article  Google Scholar 

Li S, Zhan J-K, Wang Y-J, Lin X, Zhong J-Y, Wang Y, et al. Exosomes from hyperglycemia-stimulated vascular endothelial cells contain versican that regulate calcification/senescence in vascular smooth muscle cells. Cell Biosci. 2019;9(1):1.

Article  Google Scholar 

Dahl ES, Buj R, Leon KE, Newell JM, Imamura Y, Bitler BG, et al. Targeting IDH1 as a Prosenescent Therapy in High-grade Serous Ovarian Cancer. Mol Cancer Res. 2019;17(8):1710–20.

Article  CAS  Google Scholar 

Tian C, Kim YJ, Hali S, Choo O-S, Lee J-S, Jung S-K, et al. Suppressed expression of LDHB promotes age-related hearing loss via aerobic glycolysis. Cell Death Dis. 2020;11(5):375.

Article  CAS  Google Scholar 

Mazhar M, Din AU, Ali H, Yang G, Ren W, Wang L, et al. Implication of ferroptosis in aging. Cell Death Discovery. 2021;7(1):149.

Article  Google Scholar 

Munir R, Lisec J, Swinnen JV, Zaidi N. Lipid metabolism in cancer cells under metabolic stress. Br J Cancer. 2019;120(12):1090–8.

Article  Google Scholar 

Charitou P, Rodriguez-Colman M, Gerrits J, van Triest M, Groot Koerkamp M, Hornsveld M, et al. FOXOs support the metabolic requirements of normal and tumor cells by promoting IDH1 expression. EMBO Rep. 2015;16(4):456–66.

Article  CAS  Google Scholar 

Chen F, Wang T, Feng C, Lin G, Zhu Y, Wu G, et al. Proteome Differences in placenta and endometrium between normal and intrauterine growth restricted pig fetuses. PLoS ONE. 2015;10(11): e0142396.

Article  Google Scholar 

Mitsuya K, Parker AN, Liu L, Ruan J, Vissers MCM, Myatt L. Alterations in the placental methylome with maternal obesity and evidence for metabolic regulation. PLoS ONE. 2017;12(10): e0186115.

Article  Google Scholar 

Roland L, Beauchemin D, Acteau G, Fradette C, St-Pierre I, Bilodeau JF. Effects of labor on placental expression of superoxide dismutases in preeclampsia. Placenta. 2010;31(5):392–400.

Article  CAS  Google Scholar 

Williamson RD, McCarthy FP, Manna S, Groarke E, Kell DB, Kenny LC, et al. L-(+)-ergothioneine significantly improves the clinical characteristics of preeclampsia in the reduced uterine perfusion pressure rat model. Hypertension. 2020;75(2):561–8.

Article  CAS 

留言 (0)

沒有登入
gif