Gait classification for early detection and severity rating of Parkinson’s disease based on hybrid signal processing and machine learning methods

Alam MN, Garg A, Munia TTK, Fazel-Rezai R, Tavakolian K (2017) Vertical ground reaction force marker for Parkinson’s disease. PLoS ONE 12(5):e0175951

Article  Google Scholar 

Alkhatib R, Diab MO, Corbier C, El Badaoui M (2020) Machine learning algorithm for gait analysis and classification on early detection of Parkinson. IEEE Sensors Lett 4(6):1–4

Article  Google Scholar 

Aydin F, Aslan Z (2021) Recognizing Parkinson’s disease gait patterns by vibes algorithm and Hilbert-Huang transform. Eng Sci Technol Int J 24(1):112–125

Google Scholar 

Azar AT, El-Said SA (2014) Performance analysis of support vector machines classifiers in breast cancer mammography recognition. Neural Comput Appl 24:1163–1177

Article  Google Scholar 

Babu KA, Ramkumar B, Manikandan MS (2018) Automatic identification of S1 and S2 heart sounds using simultaneous PCG and PPG recordings. IEEE Sens J 18(22):9430–9440

Article  Google Scholar 

Balaji E, Brindha D, Balakrishnan R (2020) Supervised machine learning based gait classification system for early detection and stage classification of Parkinson’s disease. Appl Soft Comput 94:106494

Article  Google Scholar 

Balaji E, Brindha D, Elumalai VK, Vikrama R (2021) Automatic and non-invasive Parkinson’s disease diagnosis and severity rating using LSTM network. Appl Soft Comput 108:107463

Article  Google Scholar 

Berger JO (2013) Statistical decision theory and Bayesian analysis. Springer, Cham

Google Scholar 

Berus L, Klancnik S, Brezocnik M, Ficko M (2019) Classifying Parkinson’s disease based on acoustic measures using artificial neural networks. Sensors 19(1):16

Article  Google Scholar 

Beyramienanlou H, Lotfivand N (2017) Shannon’s energy based algorithm in ECG signal processing. Computat Math Methods Med 2017, Article ID 8081361

Cao X, Lee K, Huang Q (2020) Bayesian variable selection in logistic regression with application to whole-brain functional connectivity analysis for Parkinson’s disease. Statistical Methods in Medical Research 0962280220978990

Caramia C, Torricelli D, Schmid M, Munoz-Gonzalez A, Gonzalez-Vargas J, Grandas F, Pons JL (2018) IMU-based classification of Parkinson’s disease from gait: a sensitivity analysis on sensor location and feature selection. IEEE J Biomed Health Inform 22(6):1765–1774

Article  Google Scholar 

Cavallo F, Moschetti A, Esposito D, Maremmani C, Rovini E (2019) Upper limb motor pre-clinical assessment in Parkinson’s disease using machine learning. Parkinsonism Relat Disorders 63:111–116

Article  Google Scholar 

Chen M, Fang Y, Zheng X (2014) Phase space reconstruction for improving the classification of single trial EEG. Biomed Signal Process Control 11:10–16

Article  Google Scholar 

Chu K (1999) An introduction to sensitivity, specificity, predictive values and likelihood ratios. Emerg Med Australas 11(3):175–181

Google Scholar 

Del Din S, Elshehabi M, Galna B, Hobert MA, Warmerdam E, Suenkel U, Maetzler W (2019) Gait analysis with wearables predicts conversion to Parkinson disease. Ann Neurol 86(3):357–367

Article  Google Scholar 

Dragomiretskiy K, Zosso D (2014) Variational mode decomposition. IEEE Trans Signal Process 62(3):531–544

Article  Google Scholar 

El Maachi I, Bilodeau GA, Bouachir W (2020) Deep 1D-Convnet for accurate Parkinson disease detection and severity prediction from gait. Expert Syst Appl 143:113075

Article  Google Scholar 

Farashi S (2020) Distinguishing between Parkinson’s disease patients and healthy individuals using a comprehensive set of time, frequency and time-frequency features extracted from vertical ground reaction force data. Biomed Signal Process Control 62:102132

Article  Google Scholar 

Freund Y, Schapire RE (1996) Experiments with a New boosting algorithm. In: Proceedings of the thirteenth international conference on machine learning, pp. 148-156

Goldberger A, Amaral L, Glass L, Hausdorff J, Ivanov PC, Mark R, Stanley HE (2000) PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation 101(23):e215–e220

Article  Google Scholar 

Hausdorff JM, Cudkowicz ME, Firtion R, Wei JY, Goldberger AL (1998) Gait variability and basal ganglia disorders: stride-to-stride variations of gait cycle timing in Parkinson’s disease and Huntington’s disease. Mov Disord 13:428–437

Article  Google Scholar 

Hoehn MM, Yahr MD (1967) Parkinsonism: onset, progression, and mortality. Neurology 17:427–442

Article  Google Scholar 

Hoehn MM, Yahr MD (1998) Parkinsonism: onset, progression, and mortality. Neurology 50:318

Article  Google Scholar 

Kuhner A, Schubert T, Cenciarini M, Wiesmeier IK, Coenen VA, Burgard W, Maurer C (2017) Correlations between motor symptoms across different motor tasks, quantified via random forest feature classification in Parkinson’s disease. Front Neurol 8:607

Article  Google Scholar 

Lee SH, Lim JS, Kim JK, Yang J, Lee Y (2014) Classification of normal and epileptic seizure EEG signals using wavelet transform, phase-space reconstruction, and Euclidean distance. Comput Methods Programs Biomed 116(1):10–25

Article  Google Scholar 

Manap HH, Tahir NM (2013) Detection of Parkinson gait pattern based on vertical ground reaction force. In: 2013 IEEE international conference on control system, computing and engineering, pp. 631-636

Manap HH, Tahir NM (2013) Detection of Parkinson gait pattern based on vertical ground reaction force. In: 2013 IEEE international conference on control system, computing and engineering, pp. 631-636

Martinez-Martin P, Gil-Nagel A, Gracia LM, Gomez JB, Martinez-Sarries J, Bermejo F, Cooperative Multicentric Group (1994) Unified Parkinson’s disease rating scale characteristics and structure. Movement Disorders 9(1):76–83

Merigó JM, Casanovas M (2011) Induced aggregation operators in the Euclidean distance and its application in financial decision making. Expert Syst Appl 38:7603–7608

Article  Google Scholar 

Michael S (2005) Applied nonlinear time series analysis: applications in physics, physiology and finance (Vol. 52). World Scientific

Minamisawa T, Sawahata H, Takakura K, Yamaguchi T (2012) Characteristics of temporal fluctuation of the vertical ground reaction force during quiet stance in Parkinson’s disease. Gait Posture 35(2):308–311

Article  Google Scholar 

Mirelman A, Bonato P, Camicioli R, Ellis TD, Giladi N, Hamilton JL, Almeida QJ (2019) Gait impairments in Parkinson’s disease. Lancet Neurol 18(7):697–708

Article  Google Scholar 

Mishra M, Banerjee S, Thomas DC, Dutta S, Mukherjee A (2018) Detection of third heart sound using variational mode decomposition. IEEE Trans Ins Meas 67(7):1713–1721

Article  Google Scholar 

Morris ME, McGinley J, Huxham F, Collier J, Iansek R (1999) Constraints on the kinetic, kinematic and spatiotemporal parameters of gait in Parkinson’s disease. Hum Mov Sci 18(2–3):461–483

Article  Google Scholar 

Oung QW, Muthusamy H, Basah SN, Lee H, Vijean V (2018) Empirical wavelet transform based features for classification of Parkinson’s disease severity. J Med Syst 42(2):29

Article  Google Scholar 

Peng B, Wang S, Zhou Z, Liu Y, Tong B, Zhang T, Dai Y (2017) A multilevel-ROI-features-based machine learning method for detection of morphometric biomarkers in Parkinson’s disease. Neurosci Lett 651:88–94

Article  Google Scholar 

Prabhu P, Karunakar AK, Anitha H, Pradhan N (2020) Classification of gait signals into different neurodegenerative diseases using statistical analysis and recurrence quantification analysis. Pattern Recogn Lett 139:10–16

Article  Google Scholar 

Rehman RZU, Del Din S, Guan Y, Yarnall AJ, Shi JQ, Rochester L (2019) Selecting clinically relevant gait characteristics for classification of early Parkinson’s disease: a comprehensive machine learning approach. Sci Rep 9(1):1–12

Article  Google Scholar 

Rehman RZU, Del Din S, Shi JQ, Galna B, Lord S, Yarnall AJ, Rochester L (2019) Comparison of walking protocols and gait assessment systems for machine learning-based classification of parkinson’s disease. Sensors 19(24):5363

Article  Google Scholar 

Sakar CO, Serbes G, Gunduz A, Tunc HC, Nizam H, Sakar BE, Apaydin H (2019) A comparative analysis of speech signal processing algorithms for Parkinson’s disease classification and the use of the tunable Q-factor wavelet transform. Appl Soft Comput 74:255–263

Article  Google Scholar 

Selesnick IW (2011) Wavelet transform with tunable Q-factor. IEEE Trans Signal Process 59(8):3560–3575

Article  Google Scholar 

Selesnick IW (2011) Resonance-based signal decomposition: a new sparsity-enabled signal analysis method. Signal Process 91(12):2793–2809

Article  Google Scholar 

Sivakumar B (2002) A phase-space reconstruction approach to prediction of suspended sediment concentration in rivers. J Hydrol 258(1–4):149–162

Google Scholar 

Som A, Krishnamurthi N, Venkataraman V, Turaga P (2016) Attractor-shape descriptors for balance impairment assessment in Parkinson’s disease. In: IEEE conference on engineering in medicine and biology society, pp. 3096-3100

Starck JL, Elad M, Donoho D (2005) Image decomposition via the combination of sparse representation and a variational approach. IEEE Trans Image Process 14(10):1570–1582

Article  Google Scholar 

Sujadevi VG, Mohan N, Kumar SS, Akshay S, Soman KP (2019) A hybrid method for fundamental heart sound segmentation using group-sparsity denoising and variational mode decomposition. Biomed Eng Lett 9(4):413–424

Article  Google Scholar 

Sun Y, Li J, Liu J, Chow C, Sun B, Wang R (2015) Using causal discovery for feature selection in multivariate numerical time series. Mach Learn 101(1–3):377–395

Article  Google Scholar 

Takens F (1980) Detecting strange attractors in turbulence. In: Dynamical systems and turbulence, Warwick 1980, Springer: Berlin, pp. 366-381

Tanha J, van Someren M, Afsarmanesh H (2017) Semi-supervised self-training for decision tree classifiers. Int J Mach Learn Cybern 8(1):355–370

Article  Google Scholar 

Vapnik VN (1998) Statistical learning theory. Wiley, New York

Google Scholar 

Veeraragavan S, Gouwanda D, Ahmad SA (2020) Parkinson’s disease diagnosis and severity assessment using ground reaction forces and neural networks. Front Physiol 11:1409

Article  Google Scholar 

Venkataraman V, Turaga P (2016) Shape distributions of nonlinear dynamical systems for video-based inference. IEEE Trans Pattern Anal Mach Intell 38(12):2531–2543

Article  Google Scholar 

Wang G, Sun J, Ma J, Xu K, Gu J (2014) Sentiment classification: the contribution of ensemble learning. Decis Support Syst 57:77–93

Article  Google Scholar 

Winter DA (1991) The biomechanics and motor control of human gait: normal, elderly and pathological. University of Waterloo Press, Waterloo

Google Scholar 

Wu Y, Jiang JH, Chen L, Lu JY, Ge JJ, Liu FT, Wang J (2019) Use of radiomic features and support vector machine to distinguish Parkinson’s disease cases from normal controls. Ann Translat Med 7(23):773

Article  Google Scholar 

Xu B, Jacquir S, Laurent G, Bilbault JM, Binczak S (2013) Phase space reconstruction of an experimental model of cardiac field potential in normal and arrhythmic conditions. In: 35th annual international conference of the IEEE engineering in medicine and biology society, pp. 3274-3277

Yang Y, Wei L, Hu Y, Wu Y, Hu L, Nie S (2021) Classification of Parkinson’s disease based on multi-modal features and stacking ensemble learning. J Neurosci Methods 350:109019

Article  Google Scholar 

Yuan Q, Cai C, Xiao H, Liu X, Wen Y (2007) Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. In D. S. Huang, L. Heutte, M. Loog (Eds.), Advanced intelligent computing theories and applications. With aspects of contemporary intelligent computing techniques (pp. 1250-1260). Springer

Yuvaraj R, Acharya UR, Hagiwara Y (2018) A novel Parkinson’s disease diagnosis index using higher-order spectra features in EEG signals. Neural Comput Appl 30(4):1225–1235

Article  Google Scholar 

Zhang S, Li X, Zong M, Zhu X, Cheng D (2017) Learning k for KNN classification. ACM Trans Intell Syst Technol 8(3):43

Article 

留言 (0)

沒有登入
gif