Altered DNA methylation in estrogen-responsive repetitive sequences of spermatozoa of infertile men with shortened anogenital distance

Vollset SE, Goren E, Yuan CW, Cao J, Smith AE, Hsiao T, et al. Fertility, mortality, migration, and population scenarios for 195 countries and territories from 2017 to 2100: a forecasting analysis for the Global Burden of Disease Study. Lancet. 2020;396:1285–306.

Article  Google Scholar 

Aitken RJ. The changing tide of human fertility. Hum Reprod. 2022;37:629–38.

Article  Google Scholar 

Carlsen E, Giwercman A, Keiding N, Skakkebaek NE. Evidence for decreasing quality of semen during past 50 years. BMJ. 1992;305:609–13.

Article  CAS  Google Scholar 

Auger J, Kunstmann JM, Czyglik F, Jouannet P. Decline in semen quality among fertile men in Paris during the past 20 years. N Engl J Med. 1995;332:281–5.

Article  CAS  Google Scholar 

Levine H, Jørgensen N, Martino-Andrade A, Mendiola J, Weksler-Derri D, Mindlis I, et al. Temporal trends in sperm count: a systematic review and meta-regression analysis. Hum Reprod Update. 2017;23:646–59.

Article  Google Scholar 

Lv MQ, Ge P, Zhang J, Yang YQ, Zhou L, Zhou DXMQ, et al. Temporal trends in semen concentration and count among 327 373 Chinese healthy men from 1981 to 2019: a systematic review. Hum Reprod. 2021;36:1751–75.

Article  Google Scholar 

Travison TG, Araujo AB, O’Donnell AB, Kupelian V, McKinlay JB. A population-level decline in serum testosterone levels in American men. J Clin Endocrinol Metab. 2007;92:196–202.

Article  CAS  Google Scholar 

Perheentupa A, Mäkinen J, Laatikainen T, Vierula M, Skakkebaek NE, Andersson AM. A cohort effect on serum testosterone levels in Finnish men. Eur J Endocrinol. 2013;168:227–33.

Article  CAS  Google Scholar 

Chodick G, Epstein S, Shalev V. Secular trends in testosterone-findings from a large state-mandate care provider. Reprod Biol Endocrinol. 2020;18:19–23.

Article  Google Scholar 

Skakkebæk NE, Lindahl-Jacobsen R, Levine H, Andersson AM, Jørgensen N, Main KM, et al. Environmental factors in declining human fertility. Nat Rev Endocrinol. 2022;18:139–57.

Article  Google Scholar 

Boisen KA, Kaleva M, Main KM, Virtanen HE, Haavisto AM, Schmidt IM, Chellakooty M, et al. Difference in prevalence of congenital cryptorchidism in infants between two Nordic countries. Lancet. 2004;363:1264–9.

Article  CAS  Google Scholar 

Lipshultz LI. Cryptorchidism in the subfertile male. Fertil Steril. 1976;27:609–20.

Article  CAS  Google Scholar 

Hadziselimovic F, Herzog B. The importance of both an early orchidopexy and germ cell maturation for fertility. Lancet. 2001;358:1156–7.

Article  CAS  Google Scholar 

Koch T, Hansen AH, Priskorn L, Petersen JH, Carlsen E, Main KM, et al. A history of cryptorchidism is associated with impaired testicular function in early adulthood: a cross-sectional study of 6376 men from the general population. Hum Reprod. 2020;35:1765–80.

Article  CAS  Google Scholar 

Visser O, van Leeuwen FE. Cancer risk in first generation migrants in North-Holland/Flevoland, The Netherlands, 1995–2004. Eur J Cancer. 2007;43:901–8.

Article  CAS  Google Scholar 

Myrup C, Westergaard T, Schnack T, Oudin A, Ritz C, Wohlfahrt J, et al. Testicular cancer risk in first- and second-generation immigrants to Denmark. J Natl Cancer Inst. 2008;100:41–7.

Article  Google Scholar 

Hemminki K, Li X. Cancer risks in Nordic immigrants and their offspring in Sweden. Eur J Cancer. 2002;38:2428–34.

Article  CAS  Google Scholar 

Main KM, Skakkebaek NE, Toppari J. Cryptorchidism as part of the testicular dysgenesis syndrome: the environmental connection. Endocr Dev. 2009;14:167–73.

Article  CAS  Google Scholar 

Pereda TJ, Motta PM. New advances in human embryology: morphofunctional relationship between the embryo and the yolk sac. Med Electron Microsc. 1999;32:67–78.

Article  Google Scholar 

Tang WW, Kobayashi T, Irie N, Dietmann S, Surani MA. Specification and epigenetic programming of the human germ line. Nat Rev Genet. 2016;17:585–600.

Article  CAS  Google Scholar 

Bourc’his D, Xu GL, Lin CS, Bollman B, Bestor TH. Dnmt3L and the establishment of maternal genomic imprints. Science. 2001;294:2536–9.

Article  CAS  Google Scholar 

Walsh CP, Chaillet JR, Bestor TH. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat Genet. 1998;20:116–7.

Article  CAS  Google Scholar 

Rollins RA, Haghighi F, Edwards JR, Das R, Zhang MQ, Ju J, et al. Large-scale structure of genomic methylation patterns. Genome Res. 2006;16:157–63.

Article  CAS  Google Scholar 

Tang WW, Dietmann S, Irie N, Leitch HG, Floros VI, Bradshaw CR, et al. A unique gene regulatory network resets the human germline epigenome for development. Cell. 2015;161:1453–67.

Article  CAS  Google Scholar 

Senft AD, Macfarlan TS. Transposable elements shape the evolution of mammalian development. Nat Rev Genet. 2021;22:691–711.

Article  CAS  Google Scholar 

Jjingo D, Conley AB, Wang J, Mariño-Ramírez L, Lunyak VV, Jordan IK. Mammalian-wide interspersed repeat (MIR)-derived enhancers and the regulation of human gene expression. Mob DNA. 2014;5:14–26.

Article  Google Scholar 

Wang J, Vicente-García C, Seruggia D, Moltó E, Fernandez-Miñán A, Neto A, et al. MIR retrotransposon sequences provide insulators to the human genome. Proc Natl Acad Sci USA. 2015;112:E4428–37.

CAS  Google Scholar 

Thompson PJ, Macfarlan TS, Lorincz MC. Long terminal repeats: from parasitic elements to building blocks of the transcriptional regulatory repertoire. Mol Cell. 2016;62:766–76.

Article  CAS  Google Scholar 

Babich V, Aksenov N, Alexeenko V, Oei SL, Buchlow G, Tomilin N. Association of some potential hormone response elements in human genes with the Alu family repeats. Gene. 1999;239:341–9.

Article  CAS  Google Scholar 

Oei SL, Babich VS, Kazakov VI, Usmanova NM, Kropotov AV, Tomilin NV. Clusters of regulatory signals for RNA polymerase II transcription associated with Alu family repeats and CpG islands in human promoters. Genomics. 2004;83:873–82.

Article  CAS  Google Scholar 

Molaro A, Hodges E, Fang F, Song Q, McCombie WR, Hannon GJ, et al. Sperm methylation profiles reveal features of epigenetic inheritance and evolution in primates. Cell. 2011;146:1029–41.

Article  CAS  Google Scholar 

Xiang X, Tao Y, DiRusso J, Hsu FM, Zhang J, Xue Z, et al. Human reproduction is regulated by retrotransposons derived from ancient Hominidae-specific viral infections. Nat Commun. 2022;13:463–78.

Article  CAS  Google Scholar 

Sasaki H, Matsui Y. Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet. 2008;9:129–40.

Article  CAS  Google Scholar 

Giwercman A, Lindstedt L, Larsson M, Bungum M, Spano M, Levine RJ, et al. Sperm chromatin structure assay as an independent predictor of fertility in vivo: a case-control study. Int J Androl. 2010;33:e221–7.

Article  Google Scholar 

Muratori M, Marchiani S, Tamburrino L, Cambi M, Lotti F, Natali I, et al. DNA fragmentation in brighter sperm predicts male fertility independently from age and semen parameters. Fertil Steril. 2015;104:582–90.

Article  CAS  Google Scholar 

Muratori M, De Geyter C. Chromatin condensation, fragmentation of DNA and differences in the epigenetic signature of infertile men. Best Pract Res Clin Endocrinol Metab. 2019;33:117–26.

Article  CAS  Google Scholar 

Levy N, Zhao X, Tang H, Jaffe RB, Speed TP, Leitman DC. Multiple transcription factor elements collaborate with estrogen receptor alpha to activate an inducible estrogen response element in the NKG2E gene. Endocrinology. 2007;148:3449–58.

Article  CAS  Google Scholar 

Kiyama R, Wada-Kiyama Y. Estrogenic endocrine disruptors: molecular mechanisms of action. Environ Int. 2015;83:11–40.

Article  CAS  Google Scholar 

Eisenberg ML, Lipshultz LI. Anogenital distance as a measure of human male fertility. J Assist Reprod Genet. 2015;32:479–84.

Article  Google Scholar 

Thankamony A, Pasterskim V, Ong KK, Acerini CL, Hughes IA. Anogenital distance as a marker of androgen exposure in humans. Andrology. 2016;4.616–25.

Foresta C, Valente U, Di Nisio A, Cacco N, Magagna S, Cosci I, et al. Anogenital distance is associated with genital measures and seminal parameters but not anthropometrics in a large cohort of young adult men. Hum Reprod. 2018;33:1628–35.

Article  CAS  Google Scholar 

Priskorn L, Bang AK, Nordkap L, Krause M, Mendiola J, Jensen TK, et al. Anogenital distance is associated with semen quality but not reproductive hormones in 1106 young men from the general population. Hum Reprod. 2019;34:12–24.

Article  CAS  Google Scholar 

Madvig F, Pedersen MK, Urho SK, Bräuner EV, Jørgensen N, Priskorn L. Anogenital distance, male factor infertility and time to pregnancy. Andrology. 2022;10:686–93.

Article  Google Scholar 

Jain VG, Singal AK. Shorter anogenital distance correlates with undescended testis: a detailed genital anthropometric analysis in human newborns. Hum Reprod. 2013;28:2343–9.

Article  Google Scholar 

Van den Driesche S, Kilcoyne KR, Wagner I, Rebourcet D, Boyle A, Mitchell R, et al. Experimentally induced testicular dysgenesis syndrome originates in the masculinization programming window. JCI Insight. 2017;23: e91204.

Google Scholar 

Hua XG, Hu R, Hu CY, Li FL, Jiang W, Zhang XJ. Associations between hypospadias, cryptorchidism and anogenital distance: Systematic review and meta-analysis. Andrologia. 2018;50: e13152.

Article 

留言 (0)

沒有登入
gif