Upgrading the accumulation of ginsenoside Rd in Panax notoginseng by a novel glycosidase-producing endophytic fungus G11-7

Biswas T, Mathur A, Gupta V, Singh M, Mathur AK (2019) Salicylic acid and ultrasonic stress modulated gene expression and ginsenoside production in differentially affected Panax quinquefolius (L.) and Panax sikkimensis (Ban.) cell suspensions. Plant Cell. Tissue and Organ Culture (PCTOC) 136:575–588. https://doi.org/10.1007/s11240-018-01538-7

Article  CAS  Google Scholar 

Chen G, Yang M, Song Y, Lu Z, Zhang J, Huang H, Wu L, Guo D (2008) Microbial transformation of ginsenoside Rb1 by Acremonium strictum. Appl Microbiol Biot 77:1345–1350. https://doi.org/10.1007/s00253-007-1258-4

Article  CAS  Google Scholar 

Deshmukh SK, Verekar SA, Bhave SV (2015) Endophytic fungi: a reservoir of antibacterials. Front Microbiol. https://doi.org/10.3389/fmicb.2014.00715

Article  Google Scholar 

Fang H, Wei Y, Li Y, Zhou G (2020) One-pot process for the production of ginsenoside Rd by coupling enzyme-assisted extraction with selective enzymolysis. Biol Pharm Bull. https://doi.org/10.1248/bpb.b19-01127

Article  Google Scholar 

Feng HW, Zhi YE, Sun YJ, Xu LR, Wang LM, Zhan XJ, Zhou P (2016) Insight into a novel β -1,4-glucosidase from streptomyces griseorubens JSD-11. Appl Biochem Microbiol. https://doi.org/10.1134/S0003683816040050

Article  Google Scholar 

Gai Q, Jiao J, Luo M, Wang W, Yao L, Fu Y (2017) Deacetylation biocatalysis and elicitation by immobilized Penicillium canescens in Astragalus membranaceus hairy root cultures: towards the enhanced and sustainable production of astragaloside IV. Plant Biotechnol J 15:297–305. https://doi.org/10.1111/pbi.12612

Article  CAS  Google Scholar 

Gao J, Zhao X, Liu H, Fan Y, Cheng H, Liang F, Chen X, Wang N, Zhou Y, Tai G (2010) A highly selective ginsenoside Rb1-hydrolyzing β-d-glucosidase from Cladosporium fulvum. Process Biochem 45:897–903. https://doi.org/10.1016/j.procbio.2010.02.016

Article  CAS  Google Scholar 

Gu Q, Duan G, Yu X (2019) Bioconversion of flavonoid glycosides from hippophae rhamnoides leaves into flavonoid aglycones by eurotium amstelodami. Microorganisms 7:122. https://doi.org/10.3390/microorganisms7050122

Article  CAS  Google Scholar 

Guan Y, Zhou J, Zhang Z, Wang G, Cai B, Hong L, Qiu Q, He H (2006) Ginsenoside-Rd from Panax notoginseng blocks Ca2+ influx through receptor- and store-operated Ca2+ channels in vascular smooth muscle cells. Eur J Pharmacol 548:129–136. https://doi.org/10.1016/j.ejphar.2006.08.001

Article  CAS  Google Scholar 

Guo HB, Cui XM, An N, Cai GP (2010) Sanchi ginseng (Panax notoginseng (Burkill) F. H. Chen) in China: distribution, cultivation and variations. Genet Resour Crop Ev 57:453–460. https://doi.org/10.1007/s10722-010-9531-2

Article  Google Scholar 

Han Y, Rhew KY (2013) Ginsenoside Rd induces protective anti-Candida albicans antibody through immunological adjuvant activity. Int Immunopharmacol 17:651–657. https://doi.org/10.1016/j.intimp.2013.08.003

Article  CAS  Google Scholar 

Hu F, Zhong J (2008) Jasmonic acid mediates gene transcription of ginsenoside biosynthesis in cell cultures of Panax notoginseng treated with chemically synthesized 2-hydroxyethyl jasmonate. Process Biochem 43:113–118. https://doi.org/10.1016/j.procbio.2007.10.010

Article  CAS  Google Scholar 

Jeong E, Kim S, Shin K, Oh D (2020) Biotransformation of protopanaxadiol-type ginsenosides in Korean ginseng extract into food-available compound k by an extracellular enzyme fromaspergillus niger. J Microbiol Biotechn 30:1560–1567. https://doi.org/10.4014/jmb.2007.07003

Article  CAS  Google Scholar 

Jhun JY, Na HS, Shin JW, Jung KA, Seo HB, Ryu JY, Choi JW, Moon S, Park H, Oh S, Cho M, Min JK (2018) Notoginseng radix and rehmanniae radix preparata extract combination (YH23537) reduces pain and cartilage degeneration in rats with monosodium iodoacetate-induced osteoarthritis. J Med Food 21:745–754. https://doi.org/10.1089/jmf.2017.4041

Article  CAS  Google Scholar 

Jiao J, Gai Q, Fu Y, Ma W, Peng X, Tan S, Efferth T (2014) Efficient production of isoflavonoids byastragalus membranaceus hairy root cultures and evaluation of antioxidant activities of extracts. J Agr Food Chem 62:12649–12658. https://doi.org/10.1021/jf503839m

Article  CAS  Google Scholar 

Jin S, Yang B, Cheng Y, Tan J, Kuang H, Fu Y, Bai X, Xie H, Gao Y, Lv C, Efferth T (2017) Improvement of resveratrol production from waste residue of grape seed by biotransformation of edible immobilized Aspergillus oryzae cells and negative pressure cavitation bioreactor using biphasic ionic liquid aqueous system pretreatment. Food Bioprod Process 102:177–185. https://doi.org/10.1016/j.fbp.2016.11.009

Article  CAS  Google Scholar 

Kong Y, Wei Z, Fu Y, Gu C, Zhao C, Yao X, Efferth T (2011) Negative-pressure cavitation extraction of cajaninstilbene acid and pinostrobin from pigeon pea [Cajanus cajan (L.) Millsp.] leaves and evaluation of antioxidant activity. Food Chem 128:596–605. https://doi.org/10.1016/j.foodchem.2011.02.079

Article  CAS  Google Scholar 

Lee D, Lee S, Jang E, Shin H, Moon B, Lee C (2016) Metabolomic profiles of aspergillus oryzae and bacillus amyloliquefaciens during rice koji fermentation. Molecules 21:773. https://doi.org/10.3390/molecules21060773

Article  CAS  Google Scholar 

Li SP, Qiao CF, Chen YW, Zhao J, Cui XM, Zhang QW, Liu XM, Hu DJ (2013) A novel strategy with standardized reference extract qualification and single compound quantitative evaluation for quality control of Panax notoginseng used as a functional food. J Chromatogr A. https://doi.org/10.1016/j.chroma.2013.07.025

Article  Google Scholar 

Li W, Fan D (2020) Biocatalytic strategies for the production of ginsenosides using glycosidase: current state and perspectives. Appl Microbiol Biot 104:3807–3823. https://doi.org/10.1007/s00253-020-10455-9

Article  CAS  Google Scholar 

Lu C, Yin Y (2018) Optimum conversion of major ginsenoside Rb1 to minor ginsenoside Rg3(S) by pulsed electric field-assisted acid hydrolysis treatment. Open Chem 16:283–290. https://doi.org/10.1515/chem-2018-0031

Article  CAS  Google Scholar 

Maran JP, Priya B (2015) Ultrasound-assisted extraction of pectin from sisal waste. Carbohyd Polym 115:732–738. https://doi.org/10.1016/j.carbpol.2014.07.058

Article  CAS  Google Scholar 

Mei R, Shi Y, Duan W, Ding H, Zhang X, Cai L, Ding Z (2020) Biotransformation of α-terpineol byalternaria alternata. Rsc Adv 10:6491–6496. https://doi.org/10.1039/C9RA08042B

Article  CAS  Google Scholar 

Neri DFM, Balcão VM, Costa RS, Rocha ICAP, Ferreira EMFC, Torres DPM, Rodrigues LRM, Carvalho LB, Teixeira JA (2009) Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chem 115:92–99. https://doi.org/10.1016/j.foodchem.2008.11.068

Article  CAS  Google Scholar 

Qian Y, Zhong L, Hou Y, Qu Y, Zhong Y (2016) Characterization and strain improvement of a hypercellulytic variant, trichoderma reesei SN1, by genetic engineering for optimized cellulase production in biomass conversion improvement. Front Microbiol. https://doi.org/10.3389/fmicb.2016.01349

Article  Google Scholar 

Quan L, Piao J, Min J, Kim H, Kim S, Yang D, Yang D (2011) Biotransformation of ginsenoside Rb1 to prosapogenins, gypenoside XVII, ginsenoside Rd, ginsenoside F2, and compound K by leuconostoc mesenteroides DC102. J Ginseng Res 35:344–351. https://doi.org/10.5142/jgr.2011.35.3.344

Article  CAS  Google Scholar 

Rai N, Kumari KP, Verma A, Kamble SC, Mishra P, Barik S, Kumar SS, Gautam V (2021) Plant associated fungal endophytes as a source of natural bioactive compounds. Mycology 12:139–159. https://doi.org/10.1080/21501203.2020.1870579

Article  CAS  Google Scholar 

Rao HKSJC (2020) Fascinating fungal endophytes associated with medicinal plants: recent advances and beneficial applications. Microbial Endophytes. https://doi.org/10.1016/B978-0-12-818734-0.00011-5

Article  Google Scholar 

Razgonova M, Zakharenko A, Shin TS, Chung G, Golokhvast K (2020) Supercritical CO2 extraction and identification of ginsenosides in Russian and North Korean ginseng by HPLC with tandem mass spectrometry. Molecules. https://doi.org/10.3390/molecules25061407

Article  Google Scholar 

Riou C, Salmon JM, Vallier MJ, Gunata Z, Barre P (1998) Purification, characterization, and substrate specificity of a novel highly glucose-tolerant beta-glucosidase from Aspergillus oryzae. Appl Environ Microb 64:3607–3614. https://doi.org/10.1128/AEM.64.10.3607-3614.1998

Article  CAS  Google Scholar 

Robl D, Delabona PS, Mergel CM, Rojas JD, Costa PS, Pimentel IC, Vicente VA, Da CPJ, Padilla G (2013) The capability of endophytic fungi for production of hemicellulases and related enzymes. Bmc Biotechnol 13:94. https://doi.org/10.1186/1472-6750-13-94

Article  CAS  Google Scholar 

Rusanova M, Rusanov K, Butterweck V, Atanassov I (2019) Exploring the capacity of endophytic fungi isolated from medicinal plants for fermentation and phenolics biotransformation of rose oil distillation wastewater. Biotechnol Biotechnol Equip 33:651–663. https://doi.org/10.1080/13102818.2019.1607778

Article  CAS  Google Scholar 

Son J, Kim H, Oh D (2008) Ginsenoside Rd production from the major ginsenoside Rb1 by β-glucosidase from Thermus caldophilus. Biotechnol Lett 30:713–716. https://doi.org/10.1007/s10529-007-9590-4

Article  CAS  Google Scholar 

Tamura T, Cui X, Sakaguchi N, Akashi M (2008) Ginsenoside Rd prevents and rescues rat intestinal epithelial cells from irradiation-induced apoptosis. Food Chem Toxicol 46:3080–3089. https://doi.org/10.1016/j.fct.2008.06.011

Article  CAS  Google Scholar 

Voget S, Steele HL, Streit WR (2006) Characterization of a metagenome-derived halotolerant cellulase. J Biotechnol 126:26–36. https://doi.org/10.1016/j.jbiotec.2006.02.011

Article  CAS  Google Scholar 

Wang C, McEntee E, Wicks S, Wu J, Yuan C (2006) Phytochemical and analytical studies of Panax notoginseng (Burk.) F.H. Chen J Nat Med-Tokyo 60:97–106. https://doi.org/10.1007/s11418-005-0027-x

Article  CAS  Google Scholar 

Wang X, Gai Z, Yu B, Feng J, Xu C, Yuan Y, Lin Z, Xu P (2007) Degradation of carbazole by microbial cells immobilized in magnetic gellan gum gel beads. Appl Environ Microb 73:6421–6428. https://doi.org/10.1128/AEM.01051-07

Article  CAS  Google Scholar 

Wu J, Jin S, Wu S, Chen Y, Chen R (2018) Effect of filamentous fungi fermentation on the extractability and physicochemical properties of beta-glucan in oat bran. Food Chem 254:122–128. https://doi.org/10.1016/j.foodchem.2018.01.158

Article  CAS  Google Scholar 

Xie W, Zhu T, Dong X, Nan F, Meng X, Zhou P, Sun G, Sun X (2019) HMGB1-triggered inflammation inhibition of notoginseng leaf triterpenes against cerebral ischemia and reperfusion injury via MAPK and NF-κB signaling pathways. Biomolecules (basel, Switzerland) 9:512. https://doi.org/10.3390/biom9100512

Article  CAS  Google Scholar 

Xu L, Han T, Wu J, Zhang Q, Zhang H, Huang B, Rahman K, Qin L (2009) Comparative research of chemical constituents, antifungal and antitumor properties of ether extracts of Panax ginseng and its endophytic fungus. Phytomedicine 16:609–616. https://doi.org/10.1016/j.phymed.2009.03.014

Article  CAS 

留言 (0)

沒有登入
gif