Alkyl aromatic derivatives from the endophytic fungus Cytospora rhizophorae

Tian SQ, Sun Y, Chen ZC, Zhao RY. Bioavailability and bioactivity of alkylresorcinols from different cereal products. J Food Qual. 2020;2020:1–6. https://doi.org/10.1155/2020/5781356.

Article  CAS  Google Scholar 

Hammerschick T, Wagner T, Vetter W. Isolation of saturated alkylresorcinols from rye grains by countercurrent chromatography. J Sep Sci. 2021;44:1904–12. https://doi.org/10.1002/jssc.202001230.

Article  CAS  Google Scholar 

Gao YM, Sun TY, Ma M, Chen GD, Zhou ZQ, Wang CX, et al. Adeninealkylresorcinol, the first alkylresorcinol tethered with nucleobase from Lasiodiplodia sp. Fitoterapia. 2016;112:254–9. https://doi.org/10.1016/j.fitote.2016.06.011

Article  CAS  Google Scholar 

Kikuchi H, Ito I, Takahashi K, Ishigaki H, Iizumi K, Kubohara Y. et al. Isolation, synthesis, and biological activity of chlorinated alkylresorcinols from Dictyostelium cellular slime molds. J Nat Prod. 2017;80:2716–22. https://doi.org/10.1021/acs.jnatprod.7b00456.

Article  CAS  Google Scholar 

López-Pliego L, García-Ramírez L, Cruz-Gómez EA, Domínguez-Ojeda P, López-Pastrana A, Fuentes-Ramírez LE. et al. Transcriptional study of the rsmZ-sRNAs and their relationship to the biosynthesis of alginate and alkylresorcinols in Azotobacter vinelandii. Mol Biotechnol. 2018;60:670–80. https://doi.org/10.1007/s12033-018-0102-7.

Article  CAS  Google Scholar 

Luís Â, Domingues F, Duarte AP. Biological properties of plant-derived alkylresorcinols: mini-review. Mini-Rev Med Chem. 2016;16:851–4. https://doi.org/10.2174/1389557516666160211121437.

Article  CAS  Google Scholar 

Kruk J, Aboul-Enein B, Bernstein J, Marchlewicz M. Dietary alkylresorcinols and cancer prevention: a systematic review. Eur Food Res Technol. 2017;243:1693–710. https://doi.org/10.1007/s00217-017-2890-6.

Article  CAS  Google Scholar 

Chen JP, Zhu LJ, Su XX, Zhang KX, Zhang X, Wang JH. et al. New alkylresorcinols from the fruits of Embelia ribes. Fitoterapia. 2018;128:66–72. https://doi.org/10.1016/j.fitote.2018.04.022.

Article  CAS  Google Scholar 

Oskarsson A, Andersson ÅO. Suppressed sex hormone biosynthesis by alkylresorcinols: a possible link to chemoprevention. Nutr Cancer. 2016;68:978–87. https://doi.org/10.1080/01635581.2016.1190022.

Article  CAS  Google Scholar 

Giambanelli E, Ferioli F, D’Antuono LP. Retention of alkylresorcinols, antioxidant activity and fatty acids following traditional hulled wheat processing. J Cereal Sci. 2018;79:98–105. https://doi.org/10.1016/j.jcs.2017.10.010.

Article  CAS  Google Scholar 

Martins TP, Rouger C, Glasser NR, Freitas S, Fraissinette NBDE, Balskus EP. et al. Chemistry, bioactivity and biosynthesis of cyanobacterial alkylresorcinols. Nat Prod Rep. 2019;36:1437–61. https://doi.org/10.1039/c8np00080h.

Article  CAS  Google Scholar 

Kozubek A, Tyman JHP. Resorcinolic lipids, the natural non-isoprenoid phenolic amphiphiles and their biological activity. Chem Rev. 1999;99:1–25. https://doi.org/10.1021/cr970464o.

Article  CAS  Google Scholar 

Ross AB, Kamal-Eldin A, Aman P. Dietary alkylresorcinols: absorption, bioactivities, and possible use as biomarkers of whole grain wheat- and rye-rich foods. Nutr Rev. 2004;62:81–95. https://doi.org/10.1111/j.1753-4887.2004.tb00029.x.

Article  Google Scholar 

Choi BK, Phan THT, Hwang S, Oh DC, Kang JS, Lee HS. et al. Resorcinosides A and B, glycosylated alkylresorcinols from a marine-derived strain of the fungus Penicillium janthinellum. J Nat Prod. 2019;82:3186–90. https://doi.org/10.1021/acs.jnatprod.9b00776.

Article  CAS  Google Scholar 

Arisawa M, Ohmura K, Kobayashi A, Morita N. A cytotoxic constituent of lysimachia japonica THUNB. (Primulaceae) and the structure-activity relationships of related compounds. Chem Pharm Bull. 1989;37:2431–4. https://doi.org/10.1248/cpb.37.2431.

Article  CAS  Google Scholar 

Jin WT, Zjawiony JK. 5-Alkylresorcinols from Merulius incarnatus. J Nat Prod. 2006;69:704–6. https://doi.org/10.1021/np050520d.

Article  CAS  Google Scholar 

Parikka K, Rowland IR, Welch RW, Wähälä K. In vitro antioxidant activity and antigenotoxicity of 5-n-alkylresorcinols. J Agric Food Chem. 2006;54:1646–50. https://doi.org/10.1021/jf052486e.

Article  CAS  Google Scholar 

Singh SB, Zink DL, Bills GF, Pelaez F, Teran A, Collado J. et al. Discovery, structure and HIV-1 integrase inhibitory activities of integracins, novel dimeric alkyl aromatics from Cytonaema sp. Tetrahedron Lett. 2002;43:1617–20. https://doi.org/10.1016/s0040-4039(02)00083-7.

Article  CAS  Google Scholar 

Shi C, Xu MJ, Bayer M, Deng ZW, Kubbutat MHG, Waejen W. et al. Phenolic compounds and their anti-oxidative properties and protein kinase inhibition from Chinese mangrove plant Laguncularia racemose. Phytochem. 2010;71:435–42. https://doi.org/10.1016/j.phytochem.2009.11.008.

Article  CAS  Google Scholar 

Dayam R, Neamati N. Small-molecule HIV-1 integrase inhibitors: the 2001-2002 update. Curr Pharm Des. 2003;9:1789–802. https://doi.org/10.2174/1381612033454469.

Article  CAS  Google Scholar 

Dang PH, Nguyen LTT, Nguyen HTT, Le TH, Do TNV, Nguyen HX. et al. A new dimeric alkylresorcinol from the stem barks of Swintonia floribunda (Anacardiaceae). Nat Prod Res. 2019;33:2883–9. https://doi.org/10.1080/14786419.2018.1509329.

Article  CAS  Google Scholar 

Liu HL, Huang XY, Li J, Xin GR, Guo YW. Absolute configurations of integracins A, B, and 15-dehydroxy-integracin B. Chirality. 2012;24:459–62. https://doi.org/10.1002/chir.22012.

Article  CAS  Google Scholar 

Shibazaki M, Tanaka K, Nagai K, Watanabe M, Fujita S, Suzuki K. et al. YM-92447 (spinosulfate A), a neuraminidase inhibitor produced by an unidentified pycnidial fungus. J Antibiot. 2004;57:812–5. https://doi.org/10.7164/antibiotics.57.812.

Article  CAS  Google Scholar 

Li ZH, Yang HY, Zhu WT, Jing DD, Li SN, Yan PK. Myrothecol A, a new alkylresorcinol with cytotoxicity from Myrothecium sp. Nat Pro Res. 2020;36:96–101. https://doi.org/10.1080/14786419.2020.1762191.

Article  CAS  Google Scholar 

Guo YZ, Yang XM, Li YY. Effect of alkylresorcinols on autophagy, migration, and invasion of HepG2 cells. J Food Sci. 2019;84:3063–8. https://doi.org/10.1111/1750-3841.14789.

Article  CAS  Google Scholar 

Bokam R, Annam SCVAR, Yalavarthi NR, Gundoju N, Ponnapalli MG. Bioinspired first stereoselective total synthesis of spinosulfate B. ChemistrySelect. 2019;4:8911–4. https://doi.org/10.1002/slct.201900396.

Article  CAS  Google Scholar 

Chen SC, Li HH, Chen YC, Li SN, Xu JL, Guo H. et al. Three new diterpenes and two new sesquiterpenoids from the endophytic fungus Trichoderma koningiopsis A729. Bioorg Chem. 2019;8:6368–374. https://doi.org/10.1016/j.bioorg.2019.02.005.

Article  CAS  Google Scholar 

Liu HX, Tan HB, Chen YC, Guo XY, Wang WX, Guo H. et al. Cytorhizins A-D, four highly structure-combined benzophenones from the endophytic fungus Cytospora rhizophorae. Org Lett. 2019;21:1063–7. https://doi.org/10.1021/acs.orglett.8b04107.

Article  CAS  Google Scholar 

Liu HX, Tan HB, Wang WX, Zhang WG, Chen YC, Li SN. et al. Cytorhizophins A and B, benzophenone-hemiterpene adducts from the endophytic fungus Cytospora rhizophorae. Org Chem Front. 2019;6:591–6. https://doi.org/10.1039/c8qo01306c.

Article  CAS  Google Scholar 

Liu ZM, Tan HB, Chen K, Chen YC, Zhang WG, Chen SC. et al. Rhizophols A and B, antioxidant and axially chiral benzophenones from the endophytic fungus Cytospora rhizophorae. Org Biomol Chem. 2019;17:10009–12. https://doi.org/10.1039/c9ob02282a.

Article  CAS  Google Scholar 

Santos ML, Magalhães GC. Utilisation of cashew nut shell liquid from Anacardium occidentale as starting material for organic synthesis: a novel route to lasiodiplodin from cardols. J Braz Chem Soc. 1999;10:13–20. https://doi.org/10.1590/s0103-50531999000100003.

Article  Google Scholar 

Goddard ML, Mottier N, Jeanneret-Gris J, Christen D, Tabacchi R, Abou-Mansour E. Differential production of phytotoxins from Phomopsis sp. from grapevine plants showing esca symptoms. J Agric Food Chem. 2014;62:8602–7. https://doi.org/10.1021/jf501141g.

Article  CAS  Google Scholar 

Chapdelaine P, Tremblay RR, Dubé JY. P-Nitrophenol-alpha-D-glucopyranoside as substrate for measurement of maltase activity in human semen. Clin Chem. 1978;24:208–11. https://doi.org/10.1093/clinchem/24.2.208.

Article  CAS  Google Scholar 

Skehan P, Storeng R, Scudiero D, Monks A, McMahon J, Vistica D. et al. New colorimetric cytotoxicity assay for anticancer-drug screening. J Natl Cancer Inst. 1990;82:1107–12. https://doi.org/10.1093/jnci/82.13.1107.

Article  CAS  Google Scholar 

Wang MM, Zhao LY, Chen K, Shang YX, Wu JF, Guo XY. et al. Antibacterial sesquiterpenes from the stems and roots of Thuja sutchuenensis. Bioorg Chem. 2020;96:103645. https://doi.org/10.1016/j.bioorg.2020.103645.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif