Germline genetic variation and predicting immune checkpoint inhibitor induced toxicity

Martins, F. et al. Adverse effects of immune-checkpoint inhibitors: epidemiology, management and surveillance. Nat. Rev. Clin. Oncol. 16, 563–580 (2019).

Article  Google Scholar 

Cooper, G. S., Bynum, M. L. K. & Somers, E. C. Recent insights in the epidemiology of autoimmune diseases: improved prevalence estimates and understanding of clustering of diseases. J. Autoimmun. 33, 197–207 (2009).

Article  Google Scholar 

Hertz, D. L. & Rae, J. Pharmacogenetics of cancer drugs. Annu. Rev. Med. 66, 65–81 (2015).

Article  Google Scholar 

Yang, W., Li, S. & Yang, Q. Risk of dermatologic and mucosal adverse events associated with PD-1/PD-L1 inhibitors in cancer patients: a meta-analysis of randomized controlled trials. Medicine 98, e15731 (2019).

Khoja, L., Day, D., Wei-Wu Chen, T., Siu, L. L. & Hansen, A. R. Tumour- and class-specific patterns of immune-related adverse events of immune checkpoint inhibitors: a systematic review. Ann. Oncol. 28, 2377–2385 (2017).

Article  Google Scholar 

Haanen, J. B. A. G. et al. Management of toxicities from immunotherapy: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 28, iv119–iv142 (2017).

Article  Google Scholar 

Electronic Medicines Compendium (emc). https://www.medicines.org.uk/emc/. (2021).

Solinas, C. et al. Programmed cell death-ligand 2: a neglected but important target in the immune response to cancer? Transl. Oncol. 13, 100811 (2020).

Article  Google Scholar 

Larkin, J. et al. Combined nivolumab and ipilimumab or monotherapy in untreated melanoma. N. Engl. J. Med. 373, 23–34 (2015).

Article  Google Scholar 

Wang, Y. et al. Treatment-related adverse events of PD-1 and PD-L1 inhibitors in clinical trials: a systematic review and meta-analysis. JAMA Oncol. 5, 1008–1019 (2019).

Article  Google Scholar 

Wang, D. Y. et al. Fatal toxic effects associated with immune checkpoint inhibitors: a systematic review and meta-analysis. JAMA Oncol. 4, 1721–1728 (2018).

Article  Google Scholar 

Chennamadhavuni, A., Abushahin, L., Jin, N., Presley, C. J. & Manne, A. Risk factors and biomarkers for immune-related adverse events: a practical guide to identifying high-risk patients and rechallenging immune checkpoint inhibitors. Front. Immunol. 13, 1–14 (2022).

Samani, A. et al. Impact of age on the toxicity of immune checkpoint inhibition. J. Immunother. Cancer 8, e000871 (2020).

Article  Google Scholar 

Asada, M. et al. The risk factors associated with immune checkpoint inhibitor-related pneumonitis. Oncology 99, 256–259 (2021).

Article  Google Scholar 

Triggianese, P. et al. Immune checkpoint inhibitors-induced autoimmunity: the impact of gender. Autoimmun. Rev. 19, 102590 (2020).

Article  Google Scholar 

Guzman-Prado, Y., Ben Shimol, J. & Samson, O. Body mass index and immune-related adverse events in patients on immune checkpoint inhibitor therapies: a systematic review and meta-analysis. Cancer Immunol. Immunother. 70, 89–100 (2021).

Article  Google Scholar 

Okada, N. et al. Risk factors of immune checkpoint inhibitor-related interstitial lung disease in patients with lung cancer: a single-institution retrospective study. Sci. Rep. 10, 13773 (2020).

Article  Google Scholar 

Atchley, W. T. et al. Immune checkpoint inhibitor-related pneumonitis in lung cancer: real-world incidence, risk factors, and management practices across six health care centers in North Carolina. Chest 160, 731–742 (2021).

Article  Google Scholar 

Tang, S.-Q. et al. The pattern of time to onset and resolution of immune-related adverse events caused by immune checkpoint inhibitors in cancer: a pooled analysis of 23 clinical trials and 8,436 patients. Cancer Res. Treat. 53, 339–354 (2021).

Article  Google Scholar 

Ghisoni, E. et al. Late-onset and long-lasting immune-related adverse events from immune checkpoint-inhibitors: an overlooked aspect in immunotherapy. Eur. J. Cancer 149, 153–164 (2021).

Article  Google Scholar 

Marthey, L. et al. Cancer immunotherapy with anti-CTLA-4 monoclonal antibodies induces an inflammatory Bowel disease. J. Crohns. Colitis 10, 395–401 (2016).

Article  Google Scholar 

Clotman, K., Janssens, K., Specenier, P., Weets, I. & De Block, C. E. M. Programmed cell death-1 inhibitor-induced type 1 diabetes mellitus. J. Clin. Endocrinol. Metab. 103, 3144–3154 (2018).

Article  Google Scholar 

Calabrese, L. H., Calabrese, C. & Cappelli, L. C. Rheumatic immune-related adverse events from cancer immunotherapy. Nat. Rev. Rheumatol. 14, 569–579 (2018).

Article  Google Scholar 

Nigro, O. et al. Late immune-related adverse events in long-term responders to PD-1/PD-L1 checkpoint inhibitors: a multicentre study. Eur. J. Cancer 134, 19–28 (2020).

Article  Google Scholar 

Khan, S. et al. Late‐onset immunotherapy toxicity and delayed autoantibody changes: checkpoint inhibitor-induced Raynaud’s‐like phenomenon. Oncologist 25, e753–e757 (2020).

Article  Google Scholar 

Khan, S. A., Pruitt, S. L., Xuan, L. & Gerber, D. E. Prevalence of autoimmune disease among patients with lung cancer: implications for immunotherapy treatment options. JAMA Oncol. 2, 1507–1508 (2016).

Article  Google Scholar 

Menzies, A. M. et al. Anti-PD-1 therapy in patients with advanced melanoma and preexisting autoimmune disorders or major toxicity with ipilimumab. Ann. Oncol. 28, 368–376 (2016).

Article  Google Scholar 

Johnson, D. B. et al. Ipilimumab therapy in patients with advanced melanoma and preexisting autoimmune disorders. JAMA Oncol. 2, 234–240 (2016).

Article  Google Scholar 

Ricciuti, B. et al. Impact of immune-related adverse events on survival in patients with advanced non-small cell lung cancer treated with nivolumab: long-term outcomes from a multi-institutional analysis. J. Cancer Res. Clin. Oncol. 145, 479–485 (2019).

Article  Google Scholar 

Petrelli, F. et al. Immune-related adverse events and survival in solid tumors treated with immune checkpoint inhibitors: a systematic review and meta-analysis. J. Immunother. 43, 1 (2019).

Article  Google Scholar 

Kirchhoff, T. & Ferguson, R. in Biomarkers for Immunotherapy of Cancer: Methods and Protocols (eds. Thurin, M., Cesano, A. & Marincola, F. M.) 93–117 (Springer New York, 2020).

Chen, D. S. & Mellman, I. Oncology meets immunology: the cancer-immunity cycle. Immunity 39, 1–10 (2013).

Article  Google Scholar 

Roederer, M. et al. The genetic architecture of the human immune system: a bioresource for autoimmunity and disease pathogenesis. Cell 161, 387–403 (2015).

Article  Google Scholar 

Mangino, M., Roederer, M., Beddall, M. H., Nestle, F. O. & Spector, T. D. Innate and adaptive immune traits are differentially affected by genetic and environmental factors. Nat. Commun. 8, 13850 (2017).

Article  Google Scholar 

Astle, W. J. et al. The allelic landscape of human blood cell trait variation and links to common complex disease. Cell 167, 1415–1429.e19 (2016).

Article  Google Scholar 

Nath, A. P. et al. Multivariate genome-wide association analysis of a cytokine network reveals variants with widespread immune, haematological, and cardiometabolic pleiotropy. Am. J. Hum. Genet. 105, 1076–1090 (2019).

Article  Google Scholar 

Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published genome-wide association studies, targeted arrays and summary statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

Ueda, H. et al. Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423, 506–511 (2003).

Article  Google Scholar 

Zeissig, S. et al. Early-onset Crohn’s disease and autoimmunity associated with a variant in CTLA-4. Gut 64, 1889–1897 (2015).

Article  Google Scholar 

Parkes, M., Cortes, A., van Heel, D. A. & Brown, M. A. Genetic insights into common pathways and complex relationships among immune-mediated diseases. Nat. Rev. Genet. 14, 661–673 (2013).

Article  Google Scholar 

Vogelsang, M. et al. The expression quantitative trait loci in immune pathways and their effect on cutaneous melanoma prognosis. Clin. Cancer Res. 22, 3268–3280 (2016).

Article  Google Scholar 

Gutierrez-Arcelus, M., Rich, S. S. & Raychaudhuri, S. Autoimmune diseases - connecting risk alleles with molecular traits of the immune system. Nat. Rev. Genet. 17, 160–174 (2016).

Article  Google Scholar 

Bentham, J. et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus. Nat. Genet. 47, 1457–1464 (2015).

Article  Google Scholar 

Cooper, J. D. et al. Seven newly identified loci for autoimmune thyroid disease. Hum. Mol. Genet. 21, 5202–5208 (2012).

Article  Google Scholar 

Sirota, M., Schaub, M. A., Batzoglou, S., Robinson, W. H. & Butte, A. J. Autoimmune disease classification by inverse association with SNP alleles. PLOS Genet. 5, e1000792 (2009).

Article  Google Scholar 

Gough, S. C. L. & Simmonds, M. J. The HLA region and autoimmune disease: associations and mechanisms of action. Curr. Genomics 8, 453–465 (2007).

Article  Google Scholar 

Martin, M. A. & Kroetz, D. L. Abacavir pharmacogenetics—from initial reports to standard of care. Pharmacotherapy 33, 765–775 (2013).

Article  Google Scholar 

Yamada, R. & Yamamoto, K. Mechanisms of disease: genetics of rheumatoid arthritis—ethnic differences in disease-associated genes. Nat. Clin. Pract. Rheumatol. 3, 644–650 (2007).

Article  Google Scholar 

Chung, W.-H. et al. A marker for Stevens–Johnson syndrome. Nature 428, 486 (2004).

Article  Google Scholar 

Lonjou, C. et al. A marker for Stevens-Johnson syndrome …: ethnicity matters. Pharmacogenomics J. 6, 265–268 (2006).

Article  Google Scholar 

Amstutz, U. et al. Clinical pharmacogenetics implementation consortium (CPIC) guideline for dihydropyrimidine dehydrogenase genotype and fluoropyrimidine dosing: 2017 update. Clin. Pharmacol. Ther. 103, 210–216 (2018).

Article  Google Scholar 

White, C. et al. Ethnic diversity of DPD activity and the DPYD gene: review of the literature. Pharmgenomics. Pers. Med. 14, 1603–1617 (2021).

Google Scholar 

Chat, V. et al. Autoimmune genetic risk variants as germline biomarkers of response to melanoma immune-checkpoint inhibition. Cancer Immunol. Immunother. 68, 897–905 (2019).

Article  Google Scholar 

Simoncic, P. D., Lee-Loy, A., Barber, D. L., Tremblay, M. L. & McGlade, C. J. The T cell protein tyrosine phosphatase is a negative regulator of Janus family kinases 1 and 3. Curr. Biol. 12, 446–453 (2002).

Article  Google Scholar 

Nomizo, T. et al. Clinical impact of single nucleotide polymorphism in PD-L1 on response to nivolumab for advanced non-small-cell lung cancer patients. Sci. Rep. 7, 45124 (2017).

Article  Google Scholar 

Refae, S. et al. Germinal Immunogenetics predict treatment outcome for PD-1/PD-L1 checkpoint inhibitors. Invest. N. Drugs https://doi.org/10.1007/s10637-019-00845-w (2019).

Article 

留言 (0)

沒有登入
gif