Identification of candidate aberrant differentially methylated/expressed genes in asthma

Li Q, Li HX, Wang MF. Bioinformatics analysis of gene expression profile of upper airway in asthmatic patients. J Hubei Univ Med. 2020;39(02):118–23.

CAS  Google Scholar 

Mims JW. Asthma: definitions and pathophysiology. Int forum allergy rhinology. 2015;5(Suppl 1):2–6.

Article  Google Scholar 

Dharmage SC, Perret JL, Custovic A. Epidemiology of asthma in children and adults. Front Pead. 2019;7:246.

Article  Google Scholar 

Eder W, Ege MJ, vM E. The asthma epidemic. N Engl J Med. 2006;23(21):2226–35.

Article  Google Scholar 

BA H, XP Y, DK H, JT PZYZ, et al. Identification of candidate aberrantly methylated and differentially expressed genes in esophageal squamous cell carcinoma. Sci Rep. 2020;16(1):9735.

Google Scholar 

Li-ping W, Sha L, Yan S, Chong B. DNA methylation and asthma: recent progress. Acad J Sec Mil Med Univ. 2017;38(2):220.

Google Scholar 

Salam MT. Asthma epigenetics. Adv Exp Med Biol. 2014;795:183–99.

Article  Google Scholar 

Karmaus W, Ziyab AH, Everson T, Holloway JW. Epigenetic mechanisms and models in the origins of asthma. Curr Opin Allergy Clin Immunol. 2013;13(1):63–9.

Article  Google Scholar 

Zhang MY, Ren W, Chen SS, Zhang Q, Li CX, Wan JX, et al. Exploring and bioinformatics analysis of differentially expressed genes in bronchial asthma. Zhonghua yi xue za zhi. 2021;101(46):3809–13.

CAS  Google Scholar 

Mullassery D, Smith NP. Lung development. Semin Pediatr Surg. 2015;24(4):152–5.

Article  Google Scholar 

Herriges M, Morrisey EE. Lung development: orchestrating the generation and regeneration of a complex organ. Development. 2014;141(3):502–13.

Article  CAS  Google Scholar 

Moon SM, Gu H, Ryu HJ, Kim JJ, Kim HT, Han BG, et al. Identification of four novel HLA-DOA alleles, DOA*010106, DOA*0102, DOA*0103, and DOA*0104 N, by sequence-based typing*. Tissue Antigens. 2005;66(3):242–5.

Article  CAS  Google Scholar 

Yucesoy B, Johnson VJ, Lummus ZL, Kashon ML, Rao M, Bannerman-Thompson H, et al. Genetic variants in the major histocompatibility complex class I and class II genes are associated with diisocyanate-induced asthma. J Occup Environ Med. 2014;56(4):382–7.

Article  CAS  Google Scholar 

Naruse TK, Kawata H, Anzai T, Takashige N, Kagiya M, Nose Y, et al. Limited polymorphism in the HLA-DOA gene. Tissue Antigens. 1999;53(4 Pt 1):359–65.

Article  CAS  Google Scholar 

Xiaobin C, Lisheng W, Jiaxi L, Zhengguang C. Progress in the application of Metabolomics in Children’s bronchial Asthma Research. Jilin J Chin Med. 2020;40 5.

Sf A, Ha A, Jh Y, Hf G. The association of FKBP5 polymorphism with asthma susceptibility in asthmatic patients. J Basic Clin Physiol Pharm. 2021;32(4):479–84.

Article  Google Scholar 

Xiaojun G, Shuling WANG, al KLe. Metabolomics Research on TCM syndrome of Childhood Asthma. Chin Archives Traditional Chin Med. 2017;35(1):36–40.

Google Scholar 

Asem MS, Buechler S, Wates RB, Miller DL, Stack MS. Wnt5a Signaling in Cancer. Cancers. 2016;8(9):79.

Article  Google Scholar 

Lin CY, Chin CH, Wu HH, Chen SH, Ho CW, Ko MT. Hubba: hub objects analyzer–a framework of interactome hubs identification for network biology. Nucleic Acids Res. 2008;36:438–43.

Article  Google Scholar 

Jeong H, Mason SP, Barabási AL, Oltvai ZN. Lethality and centrality in protein networks. Nature. 2001;411(6833):41–2.

Article  CAS  Google Scholar 

Chin CS, Samanta MP. Global snapshot of a protein interaction network-a percolation based approach. Bioinformatics. 2003;19(18):2413–9.

Article  CAS  Google Scholar 

Sabidussi G. The centrality index of a graph. Psychometrika. 1966;31(4):581–603.

Article  CAS  Google Scholar 

Guan Q, Tian Y, Zhang Z, Zhang L, Zhao P, Li J. Identification of potential key genes in the Pathogenesis of Chronic Obstructive Pulmonary Disease through Bioinformatics Analysis. Front Genet. 2021;12:754569.

Article  CAS  Google Scholar 

Zhou S, Lu H, Xiong M. Identifying Immune Cell infiltration and effective diagnostic biomarkers in rheumatoid arthritis by Bioinformatics Analysis. Front Immunol. 2021;12:726747.

Article  CAS  Google Scholar 

Ma WQ, Sun XJ, Zhu Y, Liu NF. PDK4 promotes vascular calcification by interfering with autophagic activity and metabolic reprogramming. Cell Death Dis. 2020;11(11):991.

Article  CAS  Google Scholar 

Jeong JY, Jeoung NH, Park KG, Lee IK. Transcriptional regulation of pyruvate dehydrogenase kinase. Diabetes metab J. 2012;36(5):328–35.

Article  Google Scholar 

Lee SJ, Jeong JY, Oh CJ, Park S, Kim JY, Kim HJ, et al. Pyruvate dehydrogenase kinase 4 promotes vascular calcification via SMAD1/5/8 phosphorylation. Sci Rep. 2015;5:16577.

Article  CAS  Google Scholar 

Thoudam T, Ha CM, Leem J, Chanda D, Park JS, Kim HJ, et al. PDK4 augments ER-Mitochondria contact to dampen skeletal muscle insulin signaling during obesity. Diabetes. 2019;68(3):571–86.

Article  CAS  Google Scholar 

Marchi S, Patergnani S, Pinton P. The endoplasmic reticulum-mitochondria connection: one touch, multiple functions. Biochim Biophys Acta. 2014;1837(4):461–9.

Article  CAS  Google Scholar 

Hamasaki M, Furuta N, Matsuda A, Nezu A, Yamamoto A, Fujita N, et al. Autophagosomes form at ER-mitochondria contact sites. Nature. 2013;495(7441):389–93.

Article  CAS  Google Scholar 

Mostafa MM, Rider CF, Shah S, Traves SL, Gordon PMK, Miller-Larsson A, et al. Glucocorticoid-driven transcriptomes in human airway epithelial cells: commonalities, differences and functional insight from cell lines and primary cells. BMC Med Genomics. 2019;12(1):29.

Article  Google Scholar 

Gao Z, Yu F, Jia H, Ye Z, Yao S. FK506-binding protein 5 promotes the progression of papillary thyroid carcinoma. J Int Med Res. 2021;49(4):3000605211008325.

Article  CAS  Google Scholar 

Baughman G, Wiederrecht GJ, Campbell NF, Martin MM, Bourgeois S. FKBP51, a novel T-cell-specific immunophilin capable of calcineurin inhibition. Mol Cell Biol. 1995;15(8):4395–402.

Article  CAS  Google Scholar 

Gallo LI, Lagadari M, Piwien-Pilipuk G, Galigniana MD. The 90-kDa heat-shock protein (Hsp90)-binding immunophilin FKBP51 is a mitochondrial protein that translocates to the nucleus to protect cells against oxidative stress. J Biol Chem. 2011;286(34):30152–60.

Article  CAS  Google Scholar 

Pei H, Li L, Fridley BL, Jenkins GD, Kalari KR, Lingle W, et al. FKBP51 affects cancer cell response to chemotherapy by negatively regulating akt. Cancer Cell. 2009;16(3):259–66.

Article  CAS  Google Scholar 

Huang YJ, Nariya S, Harris JM, Lynch SV, Choy DF, Arron JR, et al. The airway microbiome in patients with severe asthma: Associations with disease features and severity. J Allergy Clin Immunol. 2015;136(4):874–84.

Article  Google Scholar 

U N, Konishi SB, Kondo A, Konopka M, Matsuzaki G. H, et al. Zbtb16 regulates social cognitive behaviors and neocortical development. Transl Psychiatry. 2021;11(1):242.

Article  Google Scholar 

Suliman BA, Xu D, Williams BR. The promyelocytic leukemia zinc finger protein: two decades of molecular oncology. Front Oncol. 2012;2:74.

Article  Google Scholar 

Šeda O, Šedová L, Včelák J, Vaňková M, Liška F, Bendlová B. ZBTB16 and metabolic syndrome: a network perspective. Physiol Res. 2017;66(Suppl 3):357-s65.

Google Scholar 

Leigh R, Mostafa MM, King EM, Rider CF, Shah S, Dumonceaux C, et al. An inhaled dose of budesonide induces genes involved in transcription and signaling in the human airways: enhancement of anti- and proinflammatory effector genes. Pharmacol Res Perspect. 2016;4(4):e00243.

Article  Google Scholar 

Koopmans T, Hesse L, Nawijn MC, Kumawat K, Menzen MH, Bos ST, Smits R, Bakker ER, Van Den Berge M, Koppelman GH, Guryev V. Smooth-muscle-derived WNT5A augments allergen-induced airway remodelling and Th2 type inflammation. Sci Rep. 2020;10(1):6754.

Article  CAS  Google Scholar 

Smolich BD, McMahon JA, McMahon AP, Papkoff J. Wnt family proteins are secreted and associated with the cell surface. Mol Biol Cell. 1993;4(12):1267–75.

Article  CAS  Google Scholar 

Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, et al. Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature. 2003;423(6938):448–52.

Article  CAS  Google Scholar 

Wend P, Holland JD, Ziebold U, Birchmeier W. Wnt signaling in stem and cancer stem cells. Semin Cell Dev Biol. 2010;21(8):855–63.

Article  CAS  Google Scholar 

van Amerongen R, Nusse R. Towards an integrated view of wnt signaling in development. Development. 2009;136(19):3205–14.

Article  Google Scholar 

Kumawat K, Menzen MH, Bos IS, Baarsma HA, Borger P, Roth M, et al. Noncanonical WNT-5A signaling regulates TGF-β-induced extracellular matrix production by airway smooth muscle cells. FASEB J Off Publ Federation Am Soc Exp Biol. 2013;27(4):1631–43.

Article  CAS  Google Scholar 

Koopmans T, Kumawat K, Halayko AJ, Gosens R. Regulation of actin dynamics by WNT-5A: implications for human airway smooth muscle contraction. Sci Rep. 2016;6:30676.

Article  CAS  Google Scholar 

Choy DF, Modrek B, Abbas AR, Kummerfeld S, Clark HF, Wu LC, et al. Gene expression patterns of Th2 inflammation and intercellular communication in asthmatic airways. J Immunol . 2011;186(3):1861–9.

Article  CAS  Google Scholar 

Wu J, Fang J, Yang Z, Chen F, Liu J, Wang Y. Wnt inhibitory factor-1 regulates glioblastoma cell cycle and proliferation. J Clin Neurosci Off J Neurosurgical Soc Australasia. 2012;19(10):1428–32.

留言 (0)

沒有登入
gif