Streptomyces pacificus sp. nov., a novel spongiicolazolicin-producing actinomycete isolated from a coastal sediment

Schatz A, Bugle E, Waksman SA. Streptomycin, a substance exhibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc Soc Exp Biol Med. 1944;55:66–9.

Article  CAS  Google Scholar 

Bérdy J. Bioactive microbial metabolites. J Antibiot. 2005;58:1–26.

Article  Google Scholar 

Zhang J, Hassan HA, Abdelmohsen UR, Zahran EM. A glossary for chemical approaches towards unlocking the trove of metabolic treasures in actinomycetes. Molecules 2022;27:142.

Article  CAS  Google Scholar 

Bhattarai K, Bastola R, Baral B. Antibiotic drug discovery: Challenges and perspectives in the light of emerging antibiotic resistance. Adv Genet. 2020;105:229–92.

Article  CAS  Google Scholar 

Ramesh S, Mathivanan N. Screening of marine actinomycetes isolated from the Bay of Bengal, India for antimicrobial activity and industrial enzymes. World J Microbiol Biotechnol. 2009;25:2103–11.

Article  CAS  Google Scholar 

Subramani R, Aalbersberg W. Marine actinomycetes: An ongoing source of novel bioactive metabolites. Microbiol Res. 2012;167:571–80.

Article  CAS  Google Scholar 

Jose PA, Maharshi A, Jha B. Actinobacteria in natural products research: Progress and prospects. Microbiol Res. 2021;246:1–14.

Article  Google Scholar 

Safaei N, et al. Angucycline-like aromatic polyketide from a novel Streptomyces species reveals freshwater snail Physa acuta as underexplored reservoir for antibiotic-producing actinomycetes. Antibiotics (Basel). 2020;10:22.

Article  Google Scholar 

Iniyan AM, et al. Streptomyces marianii sp. nov., a novel marine actinomycete from southern coast of India. J Antibiot. 2021;74:59–69.

Article  CAS  Google Scholar 

Zhao XQ, et al. Streptomyces xinghaiensis sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol. 2009;59:2870–4.

Article  CAS  Google Scholar 

Mangamuri U, Vijayalakshmi M, Ganduri VSRK, Rajulapati SB, Poda S. Extracellular L-Asparaginase from Streptomyces labedae VSM-6: Isolation, Production and Optimization of Culture Conditions Using RSM. Pharmacogn J. 2017;9:932–41.

Article  CAS  Google Scholar 

Huang X, Zhou S, Huang D, Chen J, Zhu W. Streptomyces spongiicola sp. nov., an actinomycete derived from marine sponge. Int J Syst Evol Microbiol. 2015;66:738–43.

Article  Google Scholar 

Li L, Wang J, Zhou YJ, Lin HW, Lu YH. (2019). Streptomyces reniochalinae sp. nov. and Streptomyces diacarni sp. nov., from marine sponges. Int J Syst Evol Microbiol. 2019;69:99–104.

Article  CAS  Google Scholar 

Huang X, et al. Streptomyces tirandamycinicus sp. nov., a novel marine sponge-derived actinobacterium with antibacterial potential against Streptococcus agalactiae. Front Microbiol. 2019;10:1–11.

Article  Google Scholar 

Braña AF, et al. Desertomycin G, a new antibiotic with activity against Mycobacterium tuberculosis and human breast tumor cell lines produced by Streptomyces althioticus MSM3, isolated from the Cantabrian Sea Intertidal macroalgae Ulva sp. Mar Drugs. 2019;17:114.

Article  Google Scholar 

Zhang S, et al. Antimicrobial tunicamycin derivatives from the deep sea-derived Streptomyces xinghaiensis SCSIO S15077. Nat Prod Res. 2020;34:1499–1504.

Article  CAS  Google Scholar 

Ishida K, et al. New dihydronaphthothiophene derivatives by the biological transformation of seriniquinone using marine-derived actinomycete Streptomyces albogriseolus OM27-12. J Antibiot. 2021;75:9–15.

Article  Google Scholar 

Suzuki M, et al. Isolation and structure determination of new linear azole-containing peptides spongiicolazolicins A and B from Streptomyces sp. CWH03. Appl Microbiol Biotechnol. 2021;105:93–104.

Article  CAS  Google Scholar 

Goris J, et al. DNA-DNA hybridization values and their relationship to whole- genome sequence similarities. Int J Syst Evol Microbiol. 2007;57:81–91.

Article  CAS  Google Scholar 

Shirling EB, Gottlibe D. Methods for characterization of Streptomyces species. Int J Syst Bacteriol. 1966;16:313–40.

Article  Google Scholar 

Tamura T, Hatano K. Phylogenetic analysis of the genus Actinoplanes and transfer of Actinoplanes minutisporangius Ruan et al. 1986 and ‘Actinoplanes aurantiacus’ to Cryptosporangium minutisporangium comb. nov. and Cryptosporangium aurantiacum sp. nov. Int J Syst Evol Microbiol. 2001;51:2119–25.

Article  CAS  Google Scholar 

Yoon SH, et al. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int J Syst Evol Microbiol. 2017;67:1613–7.

Article  CAS  Google Scholar 

Saitou N, Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4:406–25.

CAS  Google Scholar 

Takahashi K, Nei M. Efficiencies of fast algorithms of phylogenetic inference under the criteria of maximum parsimony, minimum evolution, and maximum likelihood when a large number of sequences are used. Mol Biol Evol. 2000;17:1251–8.

Article  CAS  Google Scholar 

Felsenstein J. Evolutionary trees from DNA sequences: A maximum likelihood approach. J Mol Evol. 1981;17:368–76.

Article  CAS  Google Scholar 

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2021;35:1547–9.

Article  Google Scholar 

Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985;39:783–91.

Google Scholar 

Tanizawa Y, Fujisawa T, Arita M, Nakamura Y. DFAST: A flexible prokaryotic genome annotation pipeline for faster genome publication. Methods Mol Biol. 2019;1962:215–26.

Article  CAS  Google Scholar 

Kim J, Na SI, Kim D, Chun J. UBCG2: Up-to-date bacterial core genes and pipeline for phylogenomic analysis. J Microbiol. 2021;59:609–15.

Article  CAS  Google Scholar 

Meier-Kolthoff JP, Göker M. TYGS is an automated high-throughput platform for state-of-the-art genome-based taxonomy. Nat Commun. 2019;10:2182.

Article  Google Scholar 

Yoon SH, Ha SM, Lim J, Kwon S, Chun J. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek. 2017;110:1281–6.

Article  CAS  Google Scholar 

Meier-Kolthoff JP, Carbasse JS, Peinado-Olarte RL, Göker M. TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Res. 2022;50:D801–7.

Article  CAS  Google Scholar 

Hasegawa T, Takizawa M, Tanida S. A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol. 1983;29:319–22.

Article  CAS  Google Scholar 

Tamura T, Ishida Y, Suzuki KI. Descriptions of Actinoplanes ianthinogenes nom. rev. and Actinoplanes octamycinicus corrig. comb. nov., nom. rev. Int J Syst Evol Microbiol. 2011;61:2916–21.

Article  CAS  Google Scholar 

Sasser M. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. Newark, DE: MIDI, Inc.; 1990.

Minnikin D, et al. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods. 1984;2:233–41.

Article  CAS  Google Scholar 

Hamada M, et al. Luteimicrobium album sp. nov., a novel actinobacterium isolated from a lichen collected in Japan, and emended description of the genus Luteimicrobium. J Antibiot. 2012;65:427–31.

Article  CAS  Google Scholar 

Yassin AF, Haggenei B, Budzikiewicz H, Schaal KP. Fatty acid and polar lipid composition of the genus Amycolatopsis: Application of fast atom bombardment-mass spectrometry to structure analysis of underivatized phospholipids. Int J Syst Bacteriol. 1933;43:414–20.

Article  Google Scholar 

Hayakawa M, Nonomura H. Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol. 1987;65:501–9.

Article  CAS  Google Scholar 

Japan Color Standard Laboratory (Nihon Shikisai Kenkyusho). Guide to color standard. 1st ed. Tokyo: Japan Color Standard Co. (Nihon Shikisai Sha); 1954. p. 4–9.

Gerharbt P, et al. Manual of methods for general bacteriology. In: Robert MS, Noel RK, editors. General characterization. 1st ed. Washington, DC: American Society for Microbiology; 1981. p. 409–44.

Kiska DL, Hicks K, Pettit DJ. Identification of medically relevant Nocardia species with an abbreviated battery of tests. J Clin Microbiol. 2002;40:1346–51.

Article  Google Scholar 

Gordon RE, Barnett DA, Handerhan JE, Pang CHN. Nocardia coeliaca, Nocardia autotrophica, and the Nocardin Strain. Int J Syst Bacteriol. 1974;24:54–63.

Article  Google Scholar 

Chun J, Oren A, Ventosa A, Christensen H, Arahal DR, et al. Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. Int J Syst Evol Microbiol. 2018;68:461–6.

Article  CAS  Google Scholar 

Zhang X, Zhang J, Zheng J, Xin D, Xin Y, et al. Streptomyces wuyuanensis sp. nov., an actinomycete from soil. Int J Syst Evol Microbiol. 2013;63:2945–50.

Article  CAS  Google Scholar 

Iniyan AM, Sudarman E, Wink J, Kannan RR, Vincent SGP. Ala-geninthiocin, a new broad spectrum thiopeptide antibiotic, produced by a marine Streptomyces sp. ICN19. J Antibiot. 2019;72:99–105.

Article  CAS  Google Scholar 

Zhou S, Xiao K, Huang D, Wu W, Xu Y, et al. Complete genome sequence of Streptomyces spongiicola HNM0071T, a marine sponge-associated actinomycete producing staurosporine and echinomycin. Mar Genom. 2019;43:61–4.

Article  Google Scholar 

留言 (0)

沒有登入
gif