Obesity-induced neuroinflammation and cognitive impairment in young adult versus middle-aged mice

Blüher M. Obesity: global epidemiology and pathogenesis. Nature Reviews Endocrinology. 2019;15:288–98.

Article  Google Scholar 

Larsson U, Karlsson J, Sullivan M. PAPER Impact of overweight and obesity on health-related quality of life-a Swedish population study. Int J Obes. 2002;26:417–24.

Article  CAS  Google Scholar 

Friedlander SL, et al. Decreased Quality of Life Associated With Obesity in School-aged Children. Arch Pediatr Adolesc Med. 2003;157:1206–11.

Article  Google Scholar 

Stephenson J, et al. The association between obesity and quality of life: a retrospective analysis of a large-scale population-based cohort study. BMC Public Health. 2021;21:1–9.

Article  Google Scholar 

Pedditizi E, Peters R, Beckett N. The risk of overweight/obesity in mid-life and late life for the development of dementia: a systematic review and meta-analysis of longitudinal studies. Age Ageing. 2016;45:14–21.

Article  Google Scholar 

Callaghan BC, et al. The Prevalence and Determinants of Cognitive Deficits and Traditional Diabetic Complications in the Severely Obese. Diabetes Care. 2020;43(3):683–90.

Article  Google Scholar 

Hruby A, et al. Determinants and consequences of obesity. Am J Public Health. 2016;106:1656–62.

Article  Google Scholar 

Xu WL, Atti AR, Gatz M, Pedersen NL, Johansson B,  Fratiglioni L. Midlife overweight and obesity increase late-life dementia risk: a population-based twin study. Neurology. 2011;76(18):1568–74.

de Heredia FP, Gómez-Martínez S, Marcos A. Obesity, inflammation and the immune system. Proc Nutr Soc. 2012;71(2):332–8.

Van Eldik LJ, et al. The roles of inflammation and immune mechanisms in Alzheimer’s disease. Alzheimer’s & Dementia : Translational Research & Clinical Interventions. 2016;2:99.

Article  Google Scholar 

Cope EC, et al. Microglia Play an Active Role in Obesity-Associated Cognitive Decline. J Neurosci. 2018;38:8889–904.

Article  CAS  Google Scholar 

Hao S, et al. Dietary obesity reversibly induces synaptic stripping by microglia and impairs hippocampal plasticity. Brain Behav Immun. 2016;51:230–9.

Article  Google Scholar 

Rohm TV, et al. Inflammation in obesity, diabetes, and related disorders. Immunity. 2022;55:31–55.

Article  CAS  Google Scholar 

Nakandakari SCBR, et al. Short-term high-fat diet modulates several inflammatory, ER stress, and apoptosis markers in the hippocampus of young mice. Brain Behav Immun. 2019;79:284–93.

Article  CAS  Google Scholar 

Halliday G. Pathology and hippocampal atrophy in Alzheimer’s disease. The Lancet Neurology. 2017;16:862–4.

Article  Google Scholar 

Weyand CM, Goronzy JJ. Aging of the immune system: Mechanisms and therapeutic targets. Ann Am Thorac Soc. 2016;13:S422–8.

Article  Google Scholar 

Haynes L. Aging of the Immune System: Research Challenges to Enhance the Health Span of Older Adults. Front Aging. 2020;1:602108.

Article  Google Scholar 

Nikolich-Žugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol. 2017;19:10–9.

Article  Google Scholar 

Franceschi C, et al. Inflammaging: a new immune-metabolic viewpoint for age-related diseases. Nat Rev Endocrinol. 2018;14:576–90.

Article  CAS  Google Scholar 

Sims-Robinson C, et al. Dietary reversal ameliorates short-and long-term memory deficits induced by high-fat diet early in life. PLoS ONE. 2016;11(9): e0163883.

Article  Google Scholar 

Watson LS, et al. High-Fat diet impairs tactile discrimination memory in the mouse. Behav Brain Res. 2020;383:112454.

Article  Google Scholar 

Zhuang H, et al. Long-term high-fat diet consumption by mice throughout adulthood induces neurobehavioral alterations and hippocampal neuronal remodeling accompanied by augmented microglial lipid accumulation. Brain Behav Immun. 2022;100:155–71.

Article  CAS  Google Scholar 

Kesby JP, et al. Spatial Cognition in Adult and Aged Mice Exposed to High-Fat Diet. PLoS ONE. 2015;10: e0140034.

Article  Google Scholar 

Tucsek Z, et al. Obesity in aging exacerbates blood–brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences. 2014;69(10):1212–26.

Article  CAS  Google Scholar 

Julien C, et al. High-fat diet aggravates amyloid-beta and tau pathologies in the 3xTg-AD mouse model. Neurobiol Aging. 2010;31:1516–31.

Article  CAS  Google Scholar 

Gannon OJ, et al. High-fat diet exacerbates cognitive decline in mouse models of Alzheimer’s disease and mixed dementia in a sex-dependent manner. J Neuroinflammation. 2022;19:1–20.

Article  Google Scholar 

Moser VA, Pike CJ. Obesity Accelerates Alzheimer-Related Pathology in APOE4 but not APOE3 Mice. eNeuro. 2017;4(3):ENEURO.0077-17.2017.

Article  Google Scholar 

Spencer SJ, et al. High-fat diet worsens the impact of aging on microglial function and morphology in a region-specific manner. Neurobiol Aging. 2019;74:121–34.

Article  CAS  Google Scholar 

Valcarcel-Ares MN, et al. Obesity in Aging Exacerbates Neuroinflammation, Dysregulating Synaptic Function-Related Genes and Altering Eicosanoid Synthesis in the Mouse Hippocampus: Potential Role in Impaired Synaptic Plasticity and Cognitive Decline. The Journals of Gerontology: Series A. 2019;74:290–8.

Article  CAS  Google Scholar 

O’Brien PD, et al. Juvenile murine models of prediabetes and type 2 diabetes develop neuropathy. Dis Model Mech. 2018;11(12):dmm037374.

Article  CAS  Google Scholar 

O’Brien PD, et al. Integrated lipidomic and transcriptomic analyses identify altered nerve triglycerides in mouse models of prediabetes and type 2 diabetes. Dis Model Mech. 2020;13(2):dmm042101.

CAS  Google Scholar 

Ximerakis M, et al. Single-cell transcriptomic profiling of the aging mouse brain. Nat Neurosci. 2019;22:1696–708.

Article  CAS  Google Scholar 

Ahima RS. Connecting obesity, aging and diabetes. Nat Med. 2009;15(9):996–7.

Chen G, Yung R. Meta-inflammaging at the crossroad of geroscience. Aging med (Milton (NSW)). 2019;2:157–61.

Google Scholar 

Hotamisligil GS. Inflammation, metaflammation and immunometabolic disorders. Nature. 2017;542(7640):177–85.

Article  CAS  Google Scholar 

Fessler MB, Rudel LL, Brown M. Toll-like receptor signaling links dietary fatty acids to the metabolic syndrome. Curr Opin Lipidol. 2009;20(5):379.

Article  CAS  Google Scholar 

Li B, et al. A global perspective on the crosstalk between saturated fatty acids and Toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog lipid res. 2020;77:101020.

Article  CAS  Google Scholar 

Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Karin M. IKK-β links inflammation to obesity-induced insulin resistance. Nat Med. 2005;11(2):191–8.

Vanani AR, et al. Dimethyl fumarate reduces oxidative stress, inflammation and fat deposition by modulation of Nrf2, SREBP-1c and NF-κB signaling in HFD fed mice. Life Sci. 2021;283:119852.

Article  CAS  Google Scholar 

Jeon BT, et al. Resveratrol Attenuates Obesity-Associated Peripheral and Central Inflammation and Improves Memory Deficit in Mice Fed a High-Fat Diet. Diabetes. 2012;61:1444–54.

Article  CAS  Google Scholar 

Henn RE, et al. Glial-neuron crosstalk in health and disease: A focus on metabolism, obesity, and cognitive impairment. Neurobiol Dis. 2022;170:105766.

Article  Google Scholar 

Biessels GJ, Bravenboer B, Gispen WH. Glucose, insulin and the brain: modulation of cognition and synaptic plasticity in health and disease: a preface. Eur J Pharmacol. 2004;490(1–3):1–4.

Article  CAS  Google Scholar 

Ahmad RMAH, Nida’a AA Nida’a, Domi HA Al. Brain insulin resistance as a mechanistic mediator links peripheral metabolic disorders with declining cognition. Diabetes Metab Synd. 2022;16(4):102468.

Article  Google Scholar 

Képes Z, et al. Glucose-level dependent brain hypometabolism in type 2 diabetes mellitus and obesity. European Journal of Hybrid Imaging. 2021;5(1):1–15.

Article  Google Scholar 

Henn RE, et al. Glial-neuron crosstalk in health and disease: A focus on metabolism, obesity, and cognitive impairment. Neurobiol Dis. 2022;170: 105766.

Article  Google Scholar 

Więckowska-Gacek A, et al. Western diet as a trigger of Alzheimer’s disease: From metabolic syndrome and systemic inflammation to neuroinflammation and neurodegeneration. Ageing Res Rev. 2021;70: 101397.

Article  Google Scholar 

Sheikh MH, et al. Impact of metabolic disorders on the structural, functional, and immunological integrity of the blood-brain barrier: Therapeutic avenues. FASEB J. 2022;36(1): e22107.

Article  CAS  Google Scholar 

Dong Y, et al. Stress-induced NLRP3 inflammasome activation negatively regulates fear memory in mice. J Neuroinflammation. 2020;17:1–16.

Article  Google Scholar 

Singer BH, et al. Cecal Ligation and Puncture Results in Long-Term Central Nervous System Myeloid Inflammation. PLoS ONE. 2016;11: e0149136.

Article  Google Scholar 

Spencer SJ, et al. High-fat diet and aging interact to produce neuroinflammation and impair hippocampal-and amygdalar-dependent memory. Neurobiol Aging. 2017;58:88–101.

Article  CAS  Google Scholar 

Tucsek Z, et al. Aging exacerbates obesity-induced cerebromicrovascular rarefaction, neurovascular uncoupling, and cognitive decline in mice. J Gerontol A Biol Sci Med Sci. 2014;69:1339–52.

Article  CAS  Google Scholar 

Schellinck HM, Cyr DP, Brown RE. How Many Ways Can Mouse Behavioral Experiments Go Wrong? Confounding Variables in Mouse Models of Neurodegenerative Diseases and How to Control Them. Advances in the Study of Behavior. 2010;41:255–366.

Article 

留言 (0)

沒有登入
gif