The effect of aging on glucose metabolism improvement after Roux-en-Y gastric bypass in type 2 diabetes rats

Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27:1047–53.

Article  Google Scholar 

Chia CW, Egan JM, Ferrucci L. Age-Related Changes in Glucose Metabolism, Hyperglycemia, and Cardiovascular Risk. Circ Res. 2018;123:886–904.

Article  CAS  Google Scholar 

American Diabetes A. 12. Older Adults: Standards of Medical Care in Diabetes-2021. Diabetes Care. 2021;44:S168–S79.

Article  Google Scholar 

Kirkman MS, Briscoe VJ, Clark N, Florez H, Haas LB, Halter JB, et al. Diabetes in older adults: a consensus report. J Am Geriatr Soc. 2012;60:2342–56.

Article  Google Scholar 

Lee AK, Lee CJ, Huang ES, Sharrett AR, Coresh J, Selvin E. Risk Factors for Severe Hypoglycemia in Black and White Adults With Diabetes: The Atherosclerosis Risk in Communities (ARIC) Study. Diabetes Care. 2017;40:1661–7.

Article  CAS  Google Scholar 

Still CD, Wood GC, Benotti P, Petrick AT, Gabrielsen J, Strodel WE, et al. Preoperative prediction of type 2 diabetes remission after Roux-en-Y gastric bypass surgery: a retrospective cohort study. Lancet Diabetes Endocrinol. 2014;2:38–45.

Article  Google Scholar 

Mazidi M, de Caravatto PP, Speakman JR, Cohen RV. Mechanisms of Action of Surgical Interventions on Weight-Related Diseases: the Potential Role of Bile Acids. Obes Surg. 2017;27:826–36.

Article  Google Scholar 

Nilaweera KN, Speakman JR. Regulation of intestinal growth in response to variations in energy supply and demand. Obes Rev: Off J Int Assoc Study Obes. 2018;19:61–72.

Article  CAS  Google Scholar 

Neinast MD, Frank AP, Zechner JF, Li Q, Vishvanath L, Palmer BF, et al. Activation of natriuretic peptides and the sympathetic nervous system following Roux-en-Y gastric bypass is associated with gonadal adipose tissues browning. Mol Metab. 2015;4:427–36.

Article  CAS  Google Scholar 

Grau-Bove C, Sierra-Cruz M, Miguens-Gomez A, Rodriguez-Gallego E, Beltran-Debon R, Blay M, et al. A Ten-Day Grape Seed Procyanidin Treatment Prevents Certain Ageing Processes in Female Rats over the Long Term. Nutrients. 2020;12:3647.

Mingrone G, Panunzi S, De Gaetano A, Guidone C, Iaconelli A, Capristo E, et al. Metabolic surgery versus conventional medical therapy in patients with type 2 diabetes: 10-year follow-up of an open-label, single-centre, randomised controlled trial. Lancet. 2021;397:293–304.

Article  Google Scholar 

Murakawa Y, Zhang W, Pierson CR, Brismar T, Ostenson CG, Efendic S, et al. Impaired glucose tolerance and insulinopenia in the GK-rat causes peripheral neuropathy. Diabetes Metab Res Rev. 2002;18:473–83.

Article  CAS  Google Scholar 

Liu T, Li H, Ding G, Wang Z, Chen Y, Liu L, et al. Comparative Genome of GK and Wistar Rats Reveals Genetic Basis of Type 2 Diabetes. PLoS One. 2015;10:e0141859.

Article  Google Scholar 

Shah H, Shin AC. Meal patterns after bariatric surgery in mice and rats. Appetite. 2019;146:104340.

Article  Google Scholar 

Burgos-Ramos E, Canelles S, Frago LM, Chowen JA, Arilla-Ferreiro E, Argente J, et al. Improvement in glycemia after glucose or insulin overload in leptin-infused rats is associated with insulin-related activation of hepatic glucose metabolism. Nutr Metab. 2016;13:19.

Article  Google Scholar 

Chen W, Yin H, Zhang N, Liu W, Qu Q, Xiao J, et al. Changes of Resting Energy Expenditure in Type 2 Diabetes Rats After Roux-en-Y Gastric Bypass. Obes Surg. 2020;30:2994–3000.

Article  Google Scholar 

Owu DU, Antai AB, Udofia KH, Obembe AO, Obasi KO, Eteng MU. Vitamin C improves basal metabolic rate and lipid profile in alloxan-induced diabetes mellitus in rats. J Biosci. 2006;31:575–9.

Article  CAS  Google Scholar 

Davies KJ. Adaptive homeostasis. Mol Asp Med. 2016;49:1–7.

Article  Google Scholar 

Pomatto LCD, Davies KJA. The role of declining adaptive homeostasis in ageing. J Physiol. 2017;595:7275–309.

Article  CAS  Google Scholar 

Skogar M, Holmback U, Hedberg J, Riserus U, Sundbom M. Preserved Fat-Free Mass after Gastric Bypass and Duodenal Switch. Obes Surg. 2017;27:1735–40.

Article  Google Scholar 

Mirahmadian M, Hasani M, Taheri E, Qorbani M, Hosseini S. Influence of gastric bypass surgery on resting energy expenditure, body composition, physical activity, and thyroid hormones in morbidly obese patients. Diabetes Metab Syndr Obes. 2018;11:667–72.

Article  CAS  Google Scholar 

Shan CX, Qiu NC, Liu ME, Zha SL, Song X, Du ZP, et al. Effects of Diet on Bile Acid Metabolism and Insulin Resistance in Type 2 Diabetic Rats after Roux-en-Y Gastric Bypass. Obes Surg. 2018;28:3044–53.

Article  Google Scholar 

Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102:731–44.

Article  CAS  Google Scholar 

Thomas C, Gioiello A, Noriega L, Strehle A, Oury J, Rizzo G, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab. 2009;10:167–77.

Article  CAS  Google Scholar 

Broeders EP, Nascimento EB, Havekes B, Brans B, Roumans KH, Tailleux A, et al. The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity. Cell Metab. 2015;22:418–26.

Article  CAS  Google Scholar 

Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439:484–9.

Article  CAS  Google Scholar 

Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13:89–102.

Article  CAS  Google Scholar 

Nuss JE, Choksi KB, DeFord JH, Papaconstantinou J. Decreased enzyme activities of chaperones PDI and BiP in aged mouse livers. Biochem Biophys Res Commun. 2008;365:355–61.

Article  CAS  Google Scholar 

Paz Gavilan M, Vela J, Castano A, Ramos B, del Rio JC, Vitorica J, et al. Cellular environment facilitates protein accumulation in aged rat hippocampus. Neurobiol Aging. 2006;27:973–82.

Article  CAS  Google Scholar 

Hussain SG, Ramaiah KV. Reduced eIF2alpha phosphorylation and increased proapoptotic proteins in aging. Biochem Biophys Res Commun. 2007;355:365–70.

Article  CAS  Google Scholar 

Brown MK, Naidoo N. The endoplasmic reticulum stress response in aging and age-related diseases. Front Physiol. 2012;3:263.

Article  Google Scholar 

Barton ER, Park S, James JK, Makarewich CA, Philippou A, Eletto D, et al. Deletion of muscle GRP94 impairs both muscle and body growth by inhibiting local IGF production. FASEB J. 2012;26:3691–702.

Article  CAS  Google Scholar 

Kammoun HL, Chabanon H, Hainault I, Luquet S, Magnan C, Koike T, et al. GRP78 expression inhibits insulin and ER stress-induced SREBP-1c activation and reduces hepatic steatosis in mice. J Clin Investig. 2009;119:1201–15.

Article  CAS  Google Scholar 

Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, et al. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006;313:1137–40.

Article  Google Scholar 

Ye R, Jung DY, Jun JY, Li J, Luo S, Ko HJ, et al. Grp78 heterozygosity promotes adaptive unfolded protein response and attenuates diet-induced obesity and insulin resistance. Diabetes. 2010;59:6–16.

Article  CAS  Google Scholar 

Gregor MF, Yang L, Fabbrini E, Mohammed BS, Eagon JC, Hotamisligil GS, et al. Endoplasmic reticulum stress is reduced in tissues of obese subjects after weight loss. Diabetes. 2009;58:693–700.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif