Rapid emergence of transcriptional heterogeneity upon molecular stress predisposes cells to two distinct states of senescence

Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22:R741–52. https://doi.org/10.1016/j.cub.2012.07.024.

Article  CAS  Google Scholar 

Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194–217. https://doi.org/10.1016/j.cell.2013.05.039.

Article  CAS  Google Scholar 

Baker DJ, Childs BG, Durik M, Wijers ME, Sieben CJ, Zhong J, Saltness RA, Jeganathan KB, Verzosa GC, Pezeshki A, et al. Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan. Nature. 2016;530:184–9. https://doi.org/10.1038/nature16932.

Article  CAS  Google Scholar 

Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK, Weivoda MM, Inman CL, Ogrodnik MB, Hachfeld CM, Fraser DG, et al. Senolytics improve physical function and increase lifespan in old age. Nat Med. 2018;24:1246–56. https://doi.org/10.1038/s41591-018-0092-9.

Article  CAS  Google Scholar 

Childs BG, Gluscevic M, Baker DJ, Laberge RM, Marquess D, Dananberg J, van Deursen JM. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 2017;16:718–35. https://doi.org/10.1038/nrd.2017.116.

Article  CAS  Google Scholar 

Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, Palmer AK, Ikeno Y, Hubbard GB, Lenburg M, et al. The achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14:644–58. https://doi.org/10.1111/acel.12344.

Article  CAS  Google Scholar 

Hernandez-Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 2017;27:2652-2660.e4. https://doi.org/10.1016/j.cub.2017.07.033.

Article  CAS  Google Scholar 

Wiley CD, Flynn JM, Morrissey C, Lebofsky R, Shuga J, Dong X, Unger MA, Vijg J, Melov S, Campisi J. Analysis of individual cells identifies cell-to-cell variability following induction of cellular senescence. Aging Cell. 2017;16:1043–50. https://doi.org/10.1111/acel.12632.

Article  CAS  Google Scholar 

Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dolle ME, Calder RB, Chisholm GB, Pollock BH, Klein CA, et al. Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature. 2006;441:1011–4. https://doi.org/10.1038/nature04844.

Article  CAS  Google Scholar 

Martinez-Jimenez CP, Eling N, Chen HC, Vallejos CA, Kolodziejczyk AA, Connor F, Stojic L, Rayner TF, Stubbington MJT, Teichmann SA, et al. Aging increases cell-to-cell transcriptional variability upon immune stimulation. Science. 2017;1979(355):1433–6. https://doi.org/10.1126/science.aah4115.

Article  CAS  Google Scholar 

Hernando-Herraez I, Evano B, Stubbs T, Commere PH, Jan Bonder M, Clark S, Andrews S, Tajbakhsh S, Reik W. Ageing affects DNA methylation drift and transcriptional cell-to-cell variability in mouse muscle stem cells. Nat Commun. 2019;10:4361. https://doi.org/10.1038/s41467-019-12293-4.

Article  CAS  Google Scholar 

Salzer MC, Lafzi A, Berenguer-Llergo A, Youssif C, Castellanos A, Solanas G, Peixoto FO, Stephan-Otto Attolini C, Prats N, Aguilera M, et al. Identity noise and adipogenic traits characterize dermal fibroblast aging. Cell. 2018;175:1575-1590.e22. https://doi.org/10.1016/j.cell.2018.10.012.

Article  CAS  Google Scholar 

Cheung P, Vallania F, Warsinske HC, Donato M, Schaffert S, Chang SE, Dvorak M, Dekker CL, Davis MM, Utz PJ, et al. Single-cell chromatin modification profiling reveals increased epigenetic variations with aging. Cell. 2018;173(1385–1397):e14. https://doi.org/10.1016/j.cell.2018.03.079.

Article  CAS  Google Scholar 

Kimmel JC, Penland L, Rubinstein ND, Hendrickson DG, Kelley DR, Rosenthal AZ. Murine single-cell RNA-seq reveals cell-identity- and tissue-specific trajectories of aging. Genome Res. 2019;29:2088–103. https://doi.org/10.1101/gr.253880.119.

Article  CAS  Google Scholar 

Mendenhall AR, Martin GM, Kaeberlein M, Anderson RM. Cell-to-cell variation in gene expression and the aging process. Geroscience. 2021;43:181–96. https://doi.org/10.1007/s11357-021-00339-9.

Article  CAS  Google Scholar 

Rosenberg AB, Roco CM, Muscat RA, Kuchina A, Sample P, Yao Z, Graybuck LT, Peeler DJ, Mukherjee S, Chen W, et al. Single-cell profiling of the developing mouse brain and spinal cord with split-pool barcoding. Science. 2018;1979(360):176–82. https://doi.org/10.1126/science.aam8999.

Article  CAS  Google Scholar 

Wolf FA, Angerer P, Theis FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19:15. https://doi.org/10.1186/s13059-017-1382-0.

Article  Google Scholar 

Becht E, McInnes L, Healy J, Dutertre C-A, Kwok IWH, Ng LG, Ginhoux F, Newell EW. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37:38–44. https://doi.org/10.1038/nbt.4314.

Article  CAS  Google Scholar 

Blondel VD, Guillaume J-L, Lambiotte R, Lefebvre E. Fast unfolding of communities in large networks. J Stat Mech: Theory Exp. 2008;2008:P10008. https://doi.org/10.1088/1742-5468/2008/10/P10008.

Article  Google Scholar 

Chen J-H, Ozanne SE, and Hales CN. Methods of cellular senescence induction using oxidative stress. 2017; In, pp. 179–189. https://doi.org/10.1007/978-1-59745-361-5_14

Krenning L, Feringa FM, Shaltiel IA, van den Berg J, Medema RH. Transient activation of p53 in G2 phase is sufficient to induce senescence. Mol Cell. 2014;55:59–72. https://doi.org/10.1016/j.molcel.2014.05.007.

Article  CAS  Google Scholar 

Wiley CD, Schaum N, Alimirah F, Lopez-Dominguez JA, Orjalo AV, Scott G, Desprez PY, Benz C, Davalos AR, Campisi J. Small-molecule MDM2 antagonists attenuate the senescence-associated secretory phenotype. Sci Rep. 2018;8:2–10. https://doi.org/10.1038/s41598-018-20000-4.

Article  CAS  Google Scholar 

Mendelevich A, Vinogradova S, Gupta S, Mironov AA, Sunyaev SR, Gimelbrant AA. Replicate sequencing libraries are important for quantification of allelic imbalance. Nat Commun. 2021;12:3370. https://doi.org/10.1038/s41467-021-23544-8.

Article  CAS  Google Scholar 

Liberzon A, Birger C, Thorvaldsdóttir H, Ghandi M, Mesirov JP, Tamayo P. The molecular signatures database hallmark gene set collection. Cell Syst. 2015;1:417–25. https://doi.org/10.1016/j.cels.2015.12.004.

Article  CAS  Google Scholar 

Teo YV, Rattanavirotkul N, Olova N, Salzano A, Quintanilla A, Tarrats N, Kiourtis C, Müller M, Green AR, Adams PD, et al. Notch signaling mediates secondary senescence. Cell Rep. 2019;27:997-1007.e5. https://doi.org/10.1016/j.celrep.2019.03.104.

Article  CAS  Google Scholar 

Hoare M, Ito Y, Kang TW, Weekes MP, Matheson NJ, Patten DA, Shetty S, Parry AJ, Menon S, Salama R, et al. NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016;18:979–92. https://doi.org/10.1038/ncb3397.

Article  CAS  Google Scholar 

Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science. 2002;297:1183–6. https://doi.org/10.1126/science.1070919.

Article  CAS  Google Scholar 

Raser JM, O’Shea EK. Control of stochasticity in eukaryotic gene expression. Science. 2004;304:1811–4. https://doi.org/10.1126/science.1098641.

Article  CAS  Google Scholar 

Basisty N, Kale A, Jeon OH, Kuehnemann C, Payne T, Rao C, Holtz A, Shah S, Sharma V, Ferrucci L, et al. A proteomic atlas of senescence-associated secretomes for aging biomarker development. PLoS Biol. 2020;18:e3000599. https://doi.org/10.1371/JOURNAL.PBIO.3000599.

Article  Google Scholar 

Fontana L, Partridge L, Longo VD. Extending healthy life span-from yeast to humans. Science. 2010;1979(328):321–6. https://doi.org/10.1126/science.1172539.

Article  CAS  Google Scholar 

Huang W, Hickson LTJ, Eirin A, Kirkland JL, Lerman LO. Cellular senescence: the good, the bad and the unknown. Nat Rev Nephrol. 2022;18(10):611–27. https://doi.org/10.1038/s41581-022-00601-z.

Article  CAS  Google Scholar 

Raffaele M, Phd V, Vinciguerra M, Raffaele M. The costs and benefits of senotherapeutics for human health. Lancet Healthy Longev. 2022;3:e67–77. https://doi.org/10.1016/S2666-7568(21)00300-7.

Article  Google Scholar 

Emert BL, Cote CJ, Torre EA, Dardani IP, Jiang CL, Jain N, Shaffer SM, Raj A. Variability within rare cell states enables multiple paths toward drug resistance. Nat Biotechnol. 2021;39:865–76. https://doi.org/10.1038/s41587-021-00837-3.

Article  CAS  Google Scholar 

Reyes J, Chen JY, Stewart-Ornstein J, Karhohs KW, Mock CS, Lahav G. Fluctuations in p53 signaling allow escape from cell-cycle arrest. Mol Cell. 2018;71:581-591.e5. https://doi.org/10.1016/j.molcel.2018.06.031.

Article  CAS  Google Scholar 

Purvis JE, Karhohs KW, Mock C, Batchelor E, Loewer A, Lahav G. p53 dynamics control cell fate. Science. 2012;1979(336):1440–4. https://doi.org/10.1126/science.1218351.

Article  CAS  Google Scholar 

Tsabar M, Mock CS, Venkatachalam V, Reyes J, Karhohs KW, Oliver TG, Regev A, Jambhekar A, Lahav G. A switch in p53 dynamics marks cells that escape from DSB-induced cell cycle arrest. Cell Rep. 2020;32:107995. https://doi.org/10.1016/j.celrep.2020.107995.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif