Post-vaccine epidemiology of serotype 3 pneumococci identifies transformation inhibition through prophage-driven alteration of a non-coding RNA

Wahl B, O’Brien KL, Greenbaum A, Majumder A, Liu L, Chu Y, et al. Burden of Streptococcus pneumoniae and Haemophilus influenzae type b disease in children in the era of conjugate vaccines: global, regional, and national estimates for 2000–15. Lancet Glob Health. 2018;6:E744–57.

Article  Google Scholar 

Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo S, Weiser JN, et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 2019;29:304–16.

Article  Google Scholar 

Gladstone RA, Lo SW, Lees JA, Croucher NJ, van Tonder AJ, Corander J, et al. International genomic definition of pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact. EBioMedicine. 2019;43:338–46.

Article  Google Scholar 

Croucher NJ, Coupland PG, Stevenson AE, Callendrello A, Bentley SD, Hanage WP. Diversification of bacterial genome content through distinct mechanisms over different timescales. Nat Commun. 2014;5:5471 Nature Publishing Group.

Article  Google Scholar 

Hiller NL, Janto B, Hogg JS, Boissy R, Yu S, Powell E, et al. Comparative genomic analyses of seventeen Streptococcus pneumoniae strains: insights into the pneumococcal supragenome. J Bacteriol. 2007;189:8186 LP–8195 Available from: http://jb.asm.org/content/189/22/8186.abstract.

Article  Google Scholar 

Johnston C, Campo N, Bergé MJ, Polard P, Claverys JP. Streptococcus pneumoniae, le transformiste. Trends Microbiol. 2014;22:113–9.

Article  Google Scholar 

Apagyi KJ, Fraser C, Croucher NJ. Transformation asymmetry and the evolution of the bacterial accessory genome. Mol Biol Evol. 2018;35:575–81.

Article  Google Scholar 

Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLoS Biol. 2016;14:e1002394 Barton NH, editor.

Article  Google Scholar 

Hu FZ, Eutsey R, Ahmed A, Frazao N, Powell E, Hiller NL, et al. In vivo capsular switch in Streptococcus pneumoniae - analysis by whole genome sequencing. PLoS One. 2012;7:e47983 Available from: https://pubmed.ncbi.nlm.nih.gov/23144841.

Article  Google Scholar 

Bentley SD, Aanensen DM, Mavroidi A, Saunders D, Rabbinowitsch E, Collins M, et al. Genetic analysis of the capsular biosynthetic locus from all 90 pneumococcal serotypes. PLoS Genet. 2006;2:e31.

Article  Google Scholar 

Ganaie F, Saad JS, McGee L, van Tonder AJ, Bentley SD, Lo SW, et al. A new pneumococcal capsule type, 10D, is the 100th serotype and has a large cps fragment from an oral streptococcus. MBio. 2020;11:e00937–20.

Article  Google Scholar 

Pimenta F, Moiane B, Gertz REJ, Chochua S, Snippes Vagnone PM, Lynfield R, et al. New Pneumococcal Serotype 15D. J Clin Microbiol. 2021;59:e00329–1.

Article  Google Scholar 

Lees JA, Croucher NJ, Goldblatt D, Nosten F, Parkhill J, Turner C, et al. Genome-wide identification of lineage and locus specific variation associated with pneumococcal carriage duration. Elife. 2017;6:e26255.

Article  Google Scholar 

Løchen A, Truscott JE, Croucher NJ. Analysing pneumococcal invasiveness using Bayesian models of pathogen progression rates. PLoS Comput Biol. 2022;18:e1009389. https://doi.org/10.1371/journal.pcbi.1009389 Public Library of Science.

Article  Google Scholar 

Cartee RT, Forsee WT, Yother J. Initiation and synthesis of the Streptococcus pneumoniae type 3 capsule on a phosphatidylglycerol membrane anchor. J Bacteriol. 2005;187:4470–9.

Article  Google Scholar 

Luck JN, Tettelin H, Orihuela CJ. Sugar-coated killer: serotype 3 pneumococcal disease. Front Cell Infect Microbiol. 2020;10:613287 Available from: https://www.frontiersin.org/articles/10.3389/fcimb.2020.613287.

Article  Google Scholar 

Croucher NJ, Løchen A, Bentley SD. Pneumococcal vaccines: host interactions, population dynamics, and design principles. Annu Rev Microbiol. 2018;72:521–49.

Article  Google Scholar 

Rijkers GT, Sanders EAM, Breukels MA, Zegers BJM. Infant B cell responses to polysaccharide determinants. Vaccine. 1998;16:1396–400 Available from: https://www.sciencedirect.com/science/article/pii/S0264410X9800098X.

Article  Google Scholar 

Avery OT, Goebel WF. Chemo-immunological studies on conjugated carbohydrate-proteins : V. The immunological specificity of an antigen prepared by combining the capsular polysaccharide of type III pneumococcus with foreign protein. J Exp Med. 1931;54:437–47.

Article  Google Scholar 

IVAC. VIEW-hub Available from: https://view-hub.org/map/?set=current-vaccine-intro-status&group=vaccine-introduction&category=pcvx§x. [cited 10 Jul 2022].

Harboe ZB, Thomsen RW, Riis A, Valentiner-Branth P, Christensen JJ, Lambertsen L, et al. Pneumococcal serotypes and mortality following invasive pneumococcal disease: a population-based cohort study. PLoS Med. 2009;6:e1000081.

Article  Google Scholar 

Løchen A, Croucher NJ, Anderson RM. Divergent serotype replacement trends and increasing diversity in pneumococcal disease in high income settings reduce the benefit of expanding vaccine valency. Sci Rep. 2020;10:18977.

Article  Google Scholar 

Kandasamy R, Voysey M, Collins S, Berbers G, Robinson H, Noel I, et al. Persistent circulation of vaccine serotypes and serotype replacement after 5 years of infant immunization with 13-valent pneumococcal conjugate vaccine in the United Kingdom. J Infect Dis. 2020;221:1361–70. https://doi.org/10.1093/infdis/jiz178.

Article  Google Scholar 

Andrews NJ, Waight PA, Burbidge P, Pearce E, Roalfe L, Zancolli M, et al. Serotype-specific effectiveness and correlates of protection for the 13-valent pneumococcal conjugate vaccine: a postlicensure indirect cohort study. Lancet Infect Dis. 2014;14:839–46.

Article  Google Scholar 

Dagan R, Patterson S, Juergens C, Greenberg D, Givon-Lavi N, Porat N, et al. Comparative immunogenicity and efficacy of 13-valent and 7-valent pneumococcal conjugate vaccines in reducing nasopharyngeal colonization: a randomized double-blind trial. Clin Infect Dis. 2013;57:952–62. https://doi.org/10.1093/cid/cit428.

Article  Google Scholar 

Prymula R, Peeters P, Chrobok V, Kriz P, Novakova E, Kaliskova E, et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet. 2006;367:740–8 Available from: https://www.sciencedirect.com/science/article/pii/S0140673606683049.

Article  Google Scholar 

Choi EH, Zhang F, Lu Y-J, Malley R. Capsular polysaccharide (CPS) release by serotype 3 pneumococcal strains reduces the protective effect of anti-type 3 CPS antibodies. Clin Vaccine Immunol. 2016;23:162–7.

Article  Google Scholar 

Centre for Genomic Pathogen Surveillance. Pathogenwatch. Available from: https://pathogen.watch/genomes/all?genusId=1301&serotype=03&speciesId=1313. [cited 10 Jul 2022].

Croucher NJ, Mitchell AM, Gould KA, Inverarity D, Barquist L, Feltwell T, et al. Dominant role of nucleotide substitution in the diversification of serotype 3 pneumococci over decades and during a single infection. PLoS Genet. 2013;9:e1003868.

Article  Google Scholar 

Azarian T, Mitchell PK, Georgieva M, Thompson CM, Ghouila A, Pollard AJ, et al. Global emergence and population dynamics of divergent serotype 3 CC180 pneumococci. PLoS Pathog. 2018;14:e1007438. https://doi.org/10.1371/journal.ppat.1007438 Public Library of Science.

Article  Google Scholar 

Groves N, Sheppard CL, Litt D, Rose S, Silva A, Njoku N, et al. Evolution of Streptococcus pneumoniae serotype 3 in England and Wales: a major vaccine evader. Genes (Basel). 2019;10(11):845.

Article  Google Scholar 

Romero P, Croucher NJ, Hiller NL, Hu FZ, Ehrlich GD, Bentley SD, et al. Comparative genomic analysis of ten Streptococcus pneumoniae temperate bacteriophages. J Bacteriol. 2009;191:4854–62. https://doi.org/10.1128/JB.01272-08 American Society for Microbiology.

Article  Google Scholar 

Mostowy R, Croucher NJ, Hanage WP, Harris SR, Bentley S, Fraser C. Heterogeneity in the frequency and characteristics of homologous recombination in pneumococcal evolution. PLoS Genet. 2014;10:e1004300.

Article  Google Scholar 

Croucher NJ, Hanage WP, Harris SR, McGee L, van der Linden M, de Lencastre H, et al. Variable recombination dynamics during the emergence, transmission and “disarming” of a multidrug-resistant pneumococcal clone. BMC Biol. 2014;12:49.

Article  Google Scholar 

D’Aeth JC, van der Linden MPG, McGee L, de Lencastre H, Turner P, Song J-H, et al. The role of interspecies recombination in the evolution of antibiotic-resistant pneumococci. Elife. 2021;10:e67113. https://doi.org/10.7554/eLife.67113.

Article  Google Scholar 

Gladstone RA, Lo SW, Goater R, Yeats C, Taylor B, Hadfield J, et al. Visualizing variation within Global Pneumococcal Sequence Clusters (GPSCs) and country population snapshots to contextualize pneumococcal isolates. Microb Genomics. 2020;6:e000357 Available from: https://pubmed.ncbi.nlm.nih.gov/32375991. Microbiology Society.

Article  Google Scholar 

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19:455–77.

Article  Google Scholar 

Wellcome Sanger Institute. Assembly-stats. 2022. Available from: https://github.com/sanger-pathogens/assembly-stats [cited 11 Jul 2022].

Harris SR. SKA: Split Kmer Analysis Toolkit for bacterial genomic epidemiology. bioRxiv. 2018. https://doi.org/10.1101/453142.

Croucher NJ, Page AJ, Connor TR, Delaney AJ, Keane JA, Bentley SD, et al. Rapid phylogenetic analysis of large samples of recombinant bacterial whole genome sequences using Gubbins. Nucleic Acids Res. 2015;43:e15.

Article  Google Scholar 

Simonsen M, Mailund T, Pedersen CN. Rapid neighbour joining, Proc 8th Work Algorithms Bioinforma; 2008. p. 113–22.

Google Scholar 

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–3. https://doi.org/10.1093/bioinformatics/btu033.

Article  Google Scholar 

Chaguza C, Tonkin-Hill G, Lo SW, Hadfield J, Croucher NJ, Harris SR, et al. RCandy: an R package for visualising homologous recombinations in bacterial genomes. Bioinformatics. 2021;38:1450–1.

Article  Google Scholar 

Kalvari I, Nawrocki EP, Ontiveros-Palacios N, Argasinska J, Lamkiewicz K, Marz M, et al. Rfam 14: expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021;49:D192–200.

Article  Google Scholar 

Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–5. https://doi.org/10.1093/bioinformatics/btt509.

Article  Google Scholar 

Katoh K, Standley DM. MAFFT multiple sequence alignment software version 7: Improvements in performance and usability. Mol Biol Evol. 2013;30:772–80.

Article  Google Scholar 

Price MN, Dehal PS, Arkin AP. FastTree 2–approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5:e9490.

Article  Google Scholar 

Rambaut A. FigTree. Available from: http://tree.bio.ed.ac.uk/software/figtree/. [cited 11 Jul 2022].

Yu G, Smith DK, Zhu H, Guan Y, Lam TTY. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol Evol. 2017;8:28–36.

Article  Google Scholar 

Zuker M, Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 1981;9:133–48.

Article  Google Scholar 

University of Vienna. RNAfold WebServer. 2022. Available from: http://rna.tbi.univie.ac.at/cgi-bin/RNAWebSuite/RNAfold.cgi [cited 11 Jul 2022].

Google Scholar 

Bida JP, Maher LJ 3rd. Improved prediction of RNA tertiary structure with insights into native state dynamics. RNA. 2012;18:385–93.

Article 

留言 (0)

沒有登入
gif