microRNA-338-3p suppresses lipopolysaccharide-induced inflammatory response in HK-2 cells

Lameire N, Van Biesen W, Vanholder R. The changing epidemiology of acute renal failure. Nat Clin Pract Nephrol. 2006;2(7):364–77.

Article  Google Scholar 

Novis BK, Roizen MF, Aronson S, Thisted RA. Association of preoperative risk factors with postoperative acute renal failure. Anesth Analg. 1994;78(1):143–9.

Article  CAS  Google Scholar 

Ge QM, Huang CM, Zhu XY, Bian F, Pan SM. Differentially expressed miRNAs in sepsis-induced acute kidney injury target oxidative stress and mitochondrial dysfunction pathways. PLoS ONE. 2017;12(3):e0173292.

Article  Google Scholar 

Friedewald JJ, Rabb H. Inflammatory cells in ischemic acute renal failure. Kidney Int. 2004;66(2):486–91.

Article  Google Scholar 

Bonventre JV, Zuk A. Ischemic acute renal failure: an inflammatory disease? Kidney Int. 2004;66(2):480–5.

Article  CAS  Google Scholar 

Zhang L, Li J, Cui L, Shang J, Tian F, Wang R, et al. MicroRNA-30b promotes lipopolysaccharide-induced inflammatory injury and alleviates autophagy through JNK and NF-κB pathways in HK-2 cells. 101: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie; 2018. pp. 842–51.

Tucker PS, Scanlan AT, Dalbo VJ. Chronic kidney disease influences multiple systems: describing the relationship between oxidative stress, inflammation, kidney damage, and concomitant disease. Oxidative Med Cell Longev. 2015;2015:806358.

Article  Google Scholar 

Hulsmans M, De Keyzer D, Holvoet P. MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis. FASEB J. 2011;25(8):2515–27.

Article  CAS  Google Scholar 

Yang Y, Wang Y, Zou M, Deng G, Peng X. Gga-mir-142-3p negatively regulates Mycoplasma gallisepticum (HS strain)-induced inflammatory cytokine production via the NF-κB and MAPK signaling by targeting Table 2. Inflamm Res. 2021;70(10–12):1217–31.

CAS  Google Scholar 

Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R. Interaction and cross-talk between non-coding RNAs. Cell Mol Life Sci. 2018;75(3):467–84.

Article  CAS  Google Scholar 

Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116(2):281–97.

Article  CAS  Google Scholar 

Zhang W, Deng W, Wang Y. microRNA-103 promotes LPS-induced inflammatory injury by targeting c-Myc in HK-2 cells. Artif cells Nanomed Biotechnol. 2019;47(1):2791–9.

Article  CAS  Google Scholar 

Hsu SH, Wang B, Kota J, Yu J, Costinean S, Kutay H, et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Investig. 2012;122(8):2871–83.

Article  CAS  Google Scholar 

Bhaumik D, Scott GK, Schokrpur S, Patil CK, Orjalo AV, Rodier F, et al. MicroRNAs miR-146a/b negatively modulate the senescence-associated inflammatory mediators IL-6 and IL-8. Aging. 2009;1(4):402–11.

Article  CAS  Google Scholar 

Zheng Y, Wang Z, Tu Y, Shen H, Dai Z, Lin J, et al. miR-101a and miR-30b contribute to inflammatory cytokine-mediated β-cell dysfunction. Lab Invest. 2015;95(12):1387–97.

Article  CAS  Google Scholar 

Jiang L, Liu XQ, Ma Q, Yang Q, Gao L, Li HD, et al. Hsa-miR-500a-3P alleviates kidney injury by targeting MLKL-mediated necroptosis in renal epithelial cells. FASEB J. 2019;33(3):3523–35.

Article  CAS  Google Scholar 

Kos A, Olde Loohuis NF, Wieczorek ML, Glennon JC, Martens GJ, Kolk SM, et al. A potential regulatory role for intronic microRNA-338-3p for its host gene encoding apoptosis-associated tyrosine kinase. PLoS One. 2012;7(2):e31022.

Article  CAS  Google Scholar 

Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol. 2007;35(4):495–516.

Article  CAS  Google Scholar 

Saba R, Goodman CD, Huzarewich RL, Robertson C, Booth SA. A miRNA signature of prion induced neurodegeneration. PLoS One. 2008;3(11):e3652.

Article  Google Scholar 

Zhang C, Kang L, Zhu H, Li J, Fang R. miRNA-338-3p/CAMK IIα signaling pathway prevents acetaminophen-induced acute liver inflammation in vivo. Ann hepatol. 2020.

Liu G, Wan Q, Li J, Hu X, Gu X, Xu S. Circ_0038467 regulates lipopolysaccharide-induced inflammatory injury in human bronchial epithelial cells through sponging miR-338-3p. Thorac cancer. 2020;11(5):1297–308.

Article  CAS  Google Scholar 

Li L, Wan G, Han B, Zhang Z. Echinacoside alleviated LPS-induced cell apoptosis and inflammation in rat intestine epithelial cells by inhibiting the mTOR/STAT3 pathway. 104: Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie; 2018. pp. 622–8.

Fusco R, Gugliandolo E, Siracusa R, Scuto M, Cordaro M, D’Amico R, et al. Formyl peptide receptor 1 signaling in Acute inflammation and neural differentiation Induced by Traumatic Brain Injury. Biology. 2020;9(9).

Wu L, Zhang R, Lin S, Lin M, Wang J. Silencing CDK6-AS1 inhibits LPS-induced inflammatory damage in HK-2 cells. Open Med (Warsaw Poland). 2021;16(1):1256–64.

Article  CAS  Google Scholar 

Liu G, Friggeri A, Yang Y, Park YJ, Tsuruta Y, Abraham E. miR-147, a microRNA that is induced upon toll-like receptor stimulation, regulates murine macrophage inflammatory responses. Proc Natl Acad Sci USA. 2009;106(37):15819–24.

Article  CAS  Google Scholar 

Wang J, Li G, Lin S, Cheng L. Circ-BICC1 Knockdown alleviates lipopolysaccharide (LPS)-Induced WI-38 cell Injury through miR-338-3p/MYD88 Axis. Biochemical genetics. 2022.

Rong D, Sun H, Li Z, Liu S, Dong C, Fu K, et al. An emerging function of circRNA-miRNAs-mRNA axis in human diseases. Oncotarget. 2017;8(42):73271–81.

Article  Google Scholar 

Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33.

Article  CAS  Google Scholar 

Lorenzen JM, Haller H, Thum T. MicroRNAs as mediators and therapeutic targets in chronic kidney disease. Nat Rev Nephrol. 2011;7(5):286–94.

Article  CAS  Google Scholar 

Ichii O, Otsuka S, Sasaki N, Namiki Y, Hashimoto Y, Kon Y. Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int. 2012;81(3):280–92.

Article  CAS  Google Scholar 

Ulbing M, Kirsch AH, Leber B, Lemesch S, Münzker J, Schweighofer N, et al. MicroRNAs 223-3p and 93-5p in patients with chronic kidney disease before and after renal transplantation. Bone. 2017;95:115–23.

Article  CAS  Google Scholar 

Huang N, Wu Z, Lin L, Zhou M, Wang L, Ma H, et al. MiR-338-3p inhibits epithelial-mesenchymal transition in gastric cancer cells by targeting ZEB2 and MACC1/Met/Akt signaling. Oncotarget. 2015;6(17):15222–34.

Article  Google Scholar 

Sun K, Su G, Deng H, Dong J, Lei S, Li G. Relationship between miRNA-338-3p expression and progression and prognosis of human colorectal carcinoma. Chin Med J. 2014;127(10):1884–90.

CAS  Google Scholar 

Sun J, Feng X, Gao S, Xiao Z. microRNA-338-3p functions as a tumor suppressor in human non–small–cell lung carcinoma and targets ras-related protein 14. Mol Med Rep. 2015;11(2):1400–6.

Article  CAS  Google Scholar 

Vivacqua A, Sebastiani A, Miglietta AM, Rigiracciolo DC, Cirillo F, Galli GR, et al. miR-338-3p Is regulated by Estrogens through GPER in breast Cancer cells and Cancer-Associated fibroblasts (CAFs). Cells. 2018;7(11).

Liang Y, Xu X, Wang T, Li Y, You W, Fu J, et al. The EGFR/miR-338-3p/EYA2 axis controls breast tumor growth and lung metastasis. Cell Death Dis. 2017;8(7):e2928.

Article  CAS  Google Scholar 

Zhang X, Wang C, Li H, Niu X, Liu X, Pei D, et al. Mir-338-3p inhibits the invasion of renal cell carcinoma by downregulation of ALK5. Oncotarget. 2017;8(38):64106–13.

Article  Google Scholar 

Wang Y, Qin H. Mir-338-3p targets RAB23 and suppresses tumorigenicity of prostate cancer cells. Am J cancer Res. 2018;8(12):2564–74.

CAS  Google Scholar 

Luan X, Wang Y. LncRNA XLOC_006390 facilitates cervical cancer tumorigenesis and metastasis as a ceRNA against mir-331-3p and miR-338-3p. J gynecologic Oncol. 2018;29(6):e95.

Article  CAS  Google Scholar 

Niu Q, Liu Z, Gao J, Wang Q. MiR-338-3p enhances ovarian Cancer cell sensitivity to cisplatin by downregulating WNT2B. Yonsei Med J. 2019;60(12):1146–56.

Article  CAS  Google Scholar 

Liu J, Cao L, Feng Y, Li Y, Li T. MiR-338-3p inhibits TNF-α-induced lipogenesis in human sebocytes. Biotechnol Lett. 2017;39(9):1343–9.

Article  CAS  Google Scholar 

Niu D, Gong Z, Sun X, Yuan J, Zheng T, Wang X, et al. Mir-338-3p regulates osteoclastogenesis via targeting IKKβ gene. vitro Cell Dev biology Anim. 2019;55(4):243–51.

Article  Google Scholar 

Duan W, Dong Z, Huang Y. TRIM33/RORγt signaling pathway promoted immune inflammation in mice of AE through miR-338-3p/ circ RNA 001076. Minerva medica. 2020.

van der Sijde F, Vietsch EE, Mustafa DAM, Li Y, van Eijck CHJ. Serum mir-338-3p and miR-199b-5p are associated with the absolute neutrophil count in patients with resectable pancreatic cancer. Clin Chim Acta. 2020;505:183–9.

Article  Google Scholar 

Lu M, Huang H, Yang J, Li J, Zhao G, Li W, et al. Mir-338-3p regulates the proliferation, apoptosis and migration of SW480 cells by targeting MACC1. Experimental and therapeutic medicine. 2019;17(4):2807–14.

CAS  Google Scholar 

Weng HL, Wang MJ. Effects of microRNA–338–3p on morphine–induced apoptosis and its underlying mechanisms. Mol Med Rep. 2016;14(3):2085–92.

Article  CAS  Google Scholar 

Fu X, Tan D, Hou Z, Hu Z, Liu G, Ouyang Y, et al. The effect of mir-338-3p on HBx deletion-mutant (HBx-d382) mediated liver-cell proliferation through CyclinD1 regulation. PLoS ONE. 2012;7(8):e43204.

Article  CAS  Google Scholar 

Xu H, Zhao L, Fang Q, Sun J, Zhang S, Zhan C, et al. MiR-338-3p inhibits hepatocarcinoma cells and sensitizes these cells to sorafenib by targeting hypoxia-induced factor 1α. PLoS ONE. 2014;9(12):e115565.

Article  Google Scholar 

Wang G, Sun Y, He Y, Ji C, Hu B, Sun Y. MicroRNA-338-3p inhibits cell proliferation in hepatocellular carcinoma by target forkhead box P4 (FOXP4). Int J Clin Exp Pathol. 2015;8(1):337–44.

Google Scholar 

留言 (0)

沒有登入
gif