Approximate entropy analysis across electroencephalographic rhythmic frequency bands during physiological aging of human brain

Rose MA. Evolutionary biology of aging. New York: Oxford Univ. Press; 1991.

Google Scholar 

Rose MR, Flatt T, Graves JL, Greer LF, Martinez DE, Matos M, et al. What is aging? Front Genet. 2012;3:134.

Article  Google Scholar 

Fjell AM, Walhovd KB. Structural brain changes in aging: courses, causes and cognitive consequences. Rev Neurosci. 2010;21(3):187–221.

Article  Google Scholar 

Angelova DM, Brown DR. Microglia and the aging brain: are senescent microglia the key to neurodegeneration? J Neurochem. 2019;151(6):676–88 (12).

Article  CAS  Google Scholar 

Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a risk factor for neurodegenerative disease. Nat Rev Neurol. 2019;15(10):565–81 (10).

Article  Google Scholar 

Grimm A, Eckert A. Brain aging and neurodegeneration: from a mitochondrial point of view. J Neurochem. 2017;143(4):418–31 (11).

Article  CAS  Google Scholar 

Kumral D, Şansal F, Cesnaite E, Mahjoory K, Al E, Gaebler M, et al. BOLD and EEG signal variability at rest differently relate to aging in the human brain. Neuroimage. 2020;15(207):116373 (02).

Article  Google Scholar 

Vecchio F, Babiloni C, Lizio R, Fallani Fde V, Blinowska K, Verrienti G, et al. Resting state cortical EEG rhythms in Alzheimer’s disease: toward EEG markers for clinical applications: a review. Suppl Clin Neurophysiol. 2013;62:223–36.

Article  Google Scholar 

Roca-Stappung M, Fernández T, Becerra J, Mendoza-Montoya O, Espino M, Harmony T. Healthy aging: relationship between quantitative electroencephalogram and cognition. Neurosci Lett. 2012;510(2):115–20.

Article  CAS  Google Scholar 

Rossini PM, Del Percio C, Pasqualetti P, Cassetta E, Binetti G, Dal Forno G, et al. Conversion from mild cognitive impairment to Alzheimer’s disease is predicted by sources and coherence of brain electroencephalography rhythms. Neurosci. 2006;143(3):793–803.

Article  CAS  Google Scholar 

Vecchio F, Miraglia F, Bramanti P, Rossini PM. Human brain networks in physiological aging: a graph theoretical analysis of cortical connectivity from EEG data. J Alzheimers Dis. 2014;41(4):1239–49.

Article  Google Scholar 

Rossini PM, Di Iorio R, Granata G, Miraglia F, Vecchio F. From mild cognitive impairment to Alzheimer’s disease: a new perspective in the “land” of human brain reactivity and connectivity. J Alzheimers Dis. 2016;53(4):1389–93.

Article  Google Scholar 

Miraglia F, Vecchio F, Pappalettera C, Nucci L, Cotelli M, Judica E, et al. Brain connectivity and graph theory analysis in Alzheimer’s and Parkinson’s disease: the contribution of electrophysiological techniques. Brain Sci. 2022;18(3):12.

Bein B. Entropy. Best Pract Res Clin Anaesthesiol. 2006;20(1):101–9.

Article  CAS  Google Scholar 

Feutrill A, Roughan M. A review of Shannon and differential entropy rate estimation. Entropy (Basel). 2021;23(8).

Keshmiri S. Entropy and the brain: an overview. Entropy (Basel). 2020;22(9).

Carhart-Harris RL. The entropic brain - revisited. Neuropharmacol. 2018;11(142):167–78.

Article  Google Scholar 

Takahashi T, Cho RY, Murata T, Mizuno T, Kikuchi M, Mizukami K, et al. Age-related variation in EEG complexity to photic stimulation: a multiscale entropy analysis. Clin Neurophysiol. 2009;120(3):476–83.

Article  Google Scholar 

McIntosh AR, Vakorin V, Kovacevic N, Wang H, Diaconescu A, Protzner AB. Spatiotemporal dependency of age-related changes in brain signal variability. Cereb Cortex. 2014;24(7):1806–17.

Article  CAS  Google Scholar 

Mohamed AMA, Uçan ON, Bayat O, Duru AD. Classification of resting-state status based on sample entropy and power spectrum of electroencephalography (EEG). Appl Bionics Biomech. 2020;2020:8853238.

Article  Google Scholar 

Wang Z. Initiative AsDN Brain entropy mapping in healthy aging and Alzheimer’s disease. Front Aging Neurosci. 2020;12:596122.

Article  Google Scholar 

Alù F, Orticoni A, Judica E, Cotelli M, Rossini PM, Miraglia F, et al. Entropy modulation of electroencephalographic signals in physiological aging. Mech Ageing Dev. 2021;06(196):111472.

Article  Google Scholar 

Pappalettera C, Miraglia F, Cotelli M, Rossini PM, Vecchio F. Analysis of complexity in the EEG activity of Parkinson’s disease patients by means of approximate entropy. Geroscience. 2022 Mar 28.

Vecchio F, Miraglia F, Pappalettera C, Orticoni A, Alù F, Judica E, et al. Entropy as measure of brain networks’ complexity in eyes open and closed conditions. Symmetry. 2021;13(11):2178.

Article  Google Scholar 

Javaid H, Kumarnsit E, Chatpun S. Age-related alterations in EEG network connectivity in healthy aging. Brain Sci. 2022;12(2).

Salmaso D, Longoni AM. Problems in the assessment of hand preference. Cortex. 1985;21(4):533–49.

Article  CAS  Google Scholar 

Miraglia F, Vecchio F, Rossini PM. Brain electroencephalographic segregation as a biomarker of learning. Neural Netw. 2018;106:168–74.

Article  Google Scholar 

Vecchio F, Miraglia F, Judica E, Cotelli M, Alù F, Rossini PM. Human brain networks: a graph theoretical analysis of cortical connectivity normative database from EEG data in healthy elderly subjects. Gerosci. 2020.

Miraglia F, Vecchio F, Marra C, Quaranta D, Alù F, Peroni B, et al. Small world index in default mode network predicts progression from mild cognitive impairment to dementia. Int J Neural Syst. 2020;30(2):2050004.

Article  Google Scholar 

Jung TP, Makeig S, Humphries C, Lee TW, McKeown MJ, Iragui V, et al. Removing electroencephalographic artifacts by blind source separation. Psychophysiol. 2000;37(2):163–78.

Article  CAS  Google Scholar 

Iriarte J, Urrestarazu E, Valencia M, Alegre M, Malanda A, Viteri C, et al. Independent component analysis as a tool to eliminate artifacts in EEG: a quantitative study. J Clin Neurophysiol. 2003 2003 Jul-Aug;20(4):249–57.

Vecchio F, Pappalettera C, Miraglia F, Deinite G, Manenti R, Judica E, Caliandro P, Rossini PM. Prognostic Role of Hemispherical Functional Connectivity in Stroke: A Study via Graph Theory Versus Coherence of Electroencephalography Rhythms. Stroke. 2022.

Vecchio F, Miraglia F, Iberite F, Lacidogna G, Guglielmi V, Marra C, et al. Sustainable method for Alzheimer dementia prediction in mild cognitive impairment: electroencephalographic connectivity and graph theory combined with apolipoprotein E. Ann Neurol. 2018;84(2):302–14 (08).

Article  CAS  Google Scholar 

Vecchio F, Nucci L, Pappalettera C, Miraglia F, Iacoviello D, Rossini PM. Time-frequency analysis of brain activity in response to directional and non-directional visual stimuli: an event related spectral perturbations (ERSP) study. J Neural Eng. 2022.

Sun R, Wong WW, Wang J, Tong RK. Changes in electroencephalography complexity using a brain computer interface-motor observation training in chronic stroke patients: a fuzzy approximate entropy analysis. Front Hum Neurosci. 2017;11:444.

Article  Google Scholar 

Abásolo D, Hornero R, Espino P, Poza J, Sánchez CI, de la Rosa R. Analysis of regularity in the EEG background activity of Alzheimer’s disease patients with approximate entropy. Clin Neurophysiol. 2005;116(8):1826–34.

Article  Google Scholar 

Burioka N, Miyata M, Cornélissen G, Halberg F, Takeshima T, Kaplan DT, et al. Approximate entropy in the electroencephalogram during wake and sleep. Clin EEG Neurosci. 2005;36(1):21–4.

Article  Google Scholar 

Lee GM, Fattinger S, Mouthon AL, Noirhomme Q, Huber R. Electroencephalogram approximate entropy influenced by both age and sleep. Front Neuroinform. 2013;7:33.

Article  Google Scholar 

Montesinos L, Castaldo R, Pecchia L. On the use of approximate entropy and sample entropy with centre of pressure time-series. J Neuroeng Rehabil. 2018;15(1):116 (12).

Article  Google Scholar 

Pincus SM. Approximate entropy as a measure of system complexity. Proc Natl Acad Sci U S A. 1991;88(6):2297–301.

Article  CAS  Google Scholar 

Yan R, Gao RX. Approximate entropy as a diagnostic tool for machine health monitoring. Mech Syst Signal Process. 2007;21:824–39.

Article  Google Scholar 

Natal J, Ávila I, Tsukahara VB, Pinheiro M, Maciel CD. Entropy: from thermodynamics to information processing. Entropy (Basel). 2021;23(10).

Carhart-Harris RL, Leech R, Hellyer PJ, Shanahan M, Feilding A, Tagliazucchi E, et al. The entropic brain: a theory of conscious states informed by neuroimaging research with psychedelic drugs. Front Hum Neurosci. 2014;8:20.

Article  Google Scholar 

Craik A, He Y, Contreras-Vidal JL. Deep learning for electroencephalogram (EEG) classification tasks: a review. J Neural Eng. 2019;16(3):031001 (06).

Article  Google Scholar 

Byvatov E, Fechner U, Sadowski J, Schneider G. Comparison of support vector machine and artificial neural network systems for drug/nondrug classification. J Chem Inf Comput Sci. 2003;43(6):1882–9.

Article  CAS  Google Scholar 

Peltier SJ, Lisinski JM, Noll DC, LaConte SM. Support vector machine classification of complex fMRI data. Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:5381–4.

Google Scholar 

Kang J, Han X, Song J, Niu Z, Li X. The identification of children with autism spectrum disorder by SVM approach on EEG and eye-tracking data. Comput Biol Med. 2020;05(120):103722.

Article  Google Scholar 

Shoker L, Sanei S, Chambers J. Artifact removal from electroencephalograms using a hybrid BSS-SVM algorithm. IEEE Signal Process Letters. 2005;12(10):721–4 (10/01).

Article  Google Scholar 

Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.

Article  Google Scholar 

Platt J. Sequential minimal optimization: a fast algorithm for training support vector machines. Microsoft; 1998.

Arti Patle and Deepak Singh C. SVM kernel functions for classification. 2013 International Conference on Advances in Technology and Engineering (ICATE). 2013:1–9.

Ji N, Ma L, Dong H, Zhang X. EEG signals feature extraction based on DWT and EMD combined with approximate entropy. Brain Sci. 2019;9(8).

Sahiner B, Chan HP, Petrick N, Wagner RF, Hadjiiski L. Feature selection and classifier performance in computer-aided diagnosis: the effect of finite sample size. Med Phys. 2000;27(7):1509–22.

Article  CAS  Google Scholar 

Derek Pisner and David MS. Support vector machine. Machine Learning. 2020.

Vecchio F, Miraglia F, Alù F, Menna M, Judica E, Cotelli M, et al. Classification of Alzheimer’s disease respect to physiological aging with innovative EEG biomarkers in a machine learning implementation. (in press). J Alzheimer Dis. 2020.

Vecchio F, Miraglia F, Alù F, Judica E, Cotelli M, Pellicciari MC, et al. Human brain networks in physiological and pathological aging: reproducibility of electroencephalogram graph theoretical analysis in cortical connectivity. Brain Connect. 2022;12(1):41–51.

Article  Google Scholar 

Zhang Y. Support vector machine classification algorithm and its application. In: Liu C, Wang L, Yang A, editors. Information Computing and Applications. Berlin, Heidelberg: Springer Berlin Heidelberg 2012;179–86.

Kreuzer M, Stern MA, Hight D, Berger S, Schneider G, Sleigh JW, et al. Spectral and entropic features are altered by age in the electroencephalogram in patients under sevoflurane anesthesia. Anesthesiol. 2020;132(5):1003–16 (05).

Article  Google Scholar 

Nowak K, Costa-Faidella J, Dacewicz A, Escera C, Szelag E. Altered event-related potentials and theta oscillations index auditory working memory deficits in healthy aging. Neurobiol Aging. 2021;12(108):1–15.

Article  Google Scholar 

Spironelli C, Angrilli A. EEG delta band as a marker of brain damage in aphasic patients after recovery of language. Neuropsychologia. 2009;47(4):988–94.

Article  Google Scholar 

Ishii R, Canuet L, Aoki Y, Hata M, Iwase M, Ikeda S, et al. Healthy and pathological brain aging: from the perspective of oscillations, functional connectivity, and signal complexity. Neuropsychobiol. 2017;75(4):151–61.

Article 

留言 (0)

沒有登入
gif