Brainstem white matter microstructure is associated with hyporesponsiveness and overall sensory features in autistic children

Baranek GT, David FJ, Poe MD, Stone WL. Sensory experiences questionnaire: discriminating sensory features in young children with autism developmental delays and typical development: SEQ. J Child Psychol Psychiatry. 2018;47:591–601. https://doi.org/10.1111/j.1469-7610.2005.01546.x.

Article  Google Scholar 

Green SA, Hernandez L, Tottenham N, Krasileva K, Bookheimer SY, Dapretto M. Neurobiology of sensory overresponsivity in youth with autism spectrum disorders. JAMA Psychiat. 2015;72:778. https://doi.org/10.1001/jamapsychiatry.2015.0737.

Article  Google Scholar 

Ahn RR, Miller LJ, Milberger S, McIntosh DN. Prevalence of parents’ perceptions of sensory processing disorders among kindergarten children. Am J Occup Ther. 2004;58:287–93. https://doi.org/10.5014/ajot.58.3.287.

Article  Google Scholar 

Ben-Sasson A, Carter AS, Briggs-Gowan MJ. Sensory over-responsivity in elementary school: prevalence and social-emotional correlates. J Abnormal Child Psychol. 2009;37:705–16. https://doi.org/10.1007/s10802-008-9295-8.

Article  CAS  Google Scholar 

Tomchek SD, Dunn W. Sensory processing in children with and without autism: a comparative study using the short sensory profile. Am J Occupat Ther [Internet]. 2007;61:190–200. https://doi.org/10.5014/ajot.61.2.190.

Article  Google Scholar 

Bottema-Beutel K, Kapp SK, Lester JN, Sasson NJ, Hand BN. Avoiding ableist language: suggestions for autism researchers. Autism in Adulthood. 2020. https://doi.org/10.1089/aut.2020.0014.

Article  Google Scholar 

Kenny L, Hattersley C, Molins B, Buckley C, Povey C, Pellicano E. Which terms should be used to describe autism? Perspectives from the UK autism community. Autism [Internet]. 2016;20:442–62. https://doi.org/10.1177/1362361315588200.

Article  Google Scholar 

Surgent OJ, Walczak M, Zarzycki O, Ausderau K, Travers BG. IQ and sensory symptom severity best predict motor ability in children with and without autism spectrum disorder. J Autism Dev Disord [Internet] 2020; https://doi.org/10.1007/s10803-020-04536-x

Baranek GT, Carlson M, Sideris J, Kirby AV, Watson LR, Williams KL, et al. Longitudinal assessment of stability of sensory features in children with autism spectrum disorder or other developmental disabilities: stability of sensory features in ASD. Autism Res. 2019;12:100–11.

Article  Google Scholar 

Robertson AE, Simmons DR. The relationship between sensory sensitivity and autistic traits in the general population. J Autism Develop Dis. 2013;43:775–84. https://doi.org/10.1007/s10803-012-1608-7.

Article  Google Scholar 

Green SA, Ben-Sasson A, Soto TW, Carter AS. Anxiety and sensory over-responsivity in toddlers with autism spectrum disorders: bidirectional effects across time. J Autism Dev Disord [Internet]. 2012;42:1112–9. https://doi.org/10.1007/s10803-011-1361-3.

Article  Google Scholar 

Carpenter KLH, Baranek GT, Copeland WE, Compton S, Zucker N, Dawson G, et al. Sensory over-responsivity: an early risk factor for anxiety and behavioral challenges in young children. J Abnorm Child Psychol [Internet]. 2019;47:1075–88. https://doi.org/10.1007/s10802-018-0502-y.

Article  Google Scholar 

Jasmin E, Couture M, McKinley P, Reid G, Fombonne E, Gisel E. Sensori-motor and daily living skills of preschool children with autism spectrum disorders. J Autism Develop Dis [Internet]. 2009;39:231–41. https://doi.org/10.1007/s10803-008-0617-z.

Article  Google Scholar 

Ismael N, Lawson LM, Hartwell J. Relationship between sensory processing and participation in daily occupations for children with autism spectrum disorder: a systematic review of studies that used dunn’s sensory processing framework. Am J Occup Ther [Internet]. 2018;72:720. https://doi.org/10.5014/ajot.2018.024075.

Article  Google Scholar 

Dellapiazza F, Michelon C, Oreve M-J, Robel L, Schoenberger M, Chatel C, et al. The impact of atypical sensory processing on adaptive functioning and maladaptive behaviors in autism spectrum disorder during childhood: results from the ELENA cohort. J Autism Dev Disord. 2020;50:2142–52.

Article  Google Scholar 

Uljarević M, Baranek G, Vivanti G, Hedley D, Hudry K, Lane A. Heterogeneity of sensory features in autism spectrum disorder: challenges and perspectives for future research: sensory features in autism. Autism Res [Internet]. 2017;10:703–10.

Article  Google Scholar 

Ángeles Fernández-Gil M, Palacios-Bote R, Leo-Barahona M, Mora-Encinas JP. Anatomy of the brainstem: A gaze into the stem of life. seminars in ultrasound, CT and MRI [Internet]. 2010 [cited 2021 Feb 24];31:196–219. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0887217110000260

Burstein O, Geva R. The brainstem-informed autism framework: early life neurobehavioral markers. Front Integr Neurosci [Internet]. 2021;15:759614. https://doi.org/10.3389/fnint.2021.759614/full.

Article  Google Scholar 

Dadalko OI, Travers BG. Evidence for brainstem contributions to autism spectrum disorders. Front Integr Neurosci. 2018;12:47. https://doi.org/10.3389/fnint.2018.00047/full.

Article  Google Scholar 

Jonathan Delafield‐Butt, Colwyn Trevarthen. On the brainstem origin of autism: disruption to movements of the primary self. Autism: the movement-sensing perspective. CRC Press/Routledge/Taylor & Francis Group; p. 119–37.

Gilland E, Baker R. Evolutionary patterns of cranial nerve efferent nuclei in vertebrates. Brain Behav Evol. 2005;66:234–54.

Article  Google Scholar 

Ghazni NF, Cahill CM, Stroman PW. Tactile Sensory and pain networks in the human spinal cord and brain stem mapped by means of functional MR imaging. AJNR Am J Neuroradiol [Internet]. 2010;31:661–7. https://doi.org/10.3174/ajnr.A1909.

Article  CAS  Google Scholar 

Pierrot-Deseilligny C, Tilikete C. New insights into the upward vestibulo-oculomotor pathways in the human brainstem. Progress in Brain Research [Internet]. Elsevier; 2008. p. 509–18. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0079612308006730

Párraga RG, Possatti LL, Alves RV, Ribas GC, Türe U, de Oliveira E. Microsurgical anatomy and internal architecture of the brainstem in 3D images: surgical considerations. JNS [Internet]. 2016;124:1377–95.

Article  Google Scholar 

Bickford ME Thalamic circuit diversity: modulation of the driver/modulator framework. Front Neural Circuits [Internet] 2016;https://doi.org/10.3389/fncir.2015.00086

Kobayashi Y, Isa T. Sensory-motor gating and cognitive control by the brainstem cholinergic system. Neural Net. 2002;15:731–41.

Article  Google Scholar 

McFadyen J, Dolan RJ, Garrido MI. The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nat Rev Neurosci [Internet]. 2020;21:264–76.

Article  CAS  Google Scholar 

Basura GJ, Koehler SD, Shore SE. Multi-sensory integration in brainstem and auditory cortex. Brain Res [Internet]. 2012;1485:95–107.

Article  CAS  Google Scholar 

Weldon DA, Best PJ. Changes in sensory responsivity in deep layer neurons of the superior colliculus of behaving rats. Behav Brain Res [Internet]. 1992;47:97–101.

Article  CAS  Google Scholar 

Ganmor E, Katz Y, Lampl I. Intensity-dependent adaptation of cortical and thalamic neurons is controlled by brainstem circuits of the sensory pathway. Neuron [Internet]. 2010;66:273–86.

Article  CAS  Google Scholar 

Jou RJ, Frazier TW, Keshavan MS, Minshew NJ, Hardan AY. A two-year longitudinal pilot MRI study of the brainstem in autism. Behav Brain Res [Internet]. 2013;251:163–7.

Article  Google Scholar 

Cauzzo S, Singh K, Stauder M, García-Gomar MG, Vanello N, Passino C, et al. Functional connectome of brainstem nuclei involved in autonomic, limbic, pain and sensory processing in living humans from 7 Tesla resting state fMRI. NeuroImage [Internet]. 2022;118925.

Narayan A, Rowe MA, Palacios EM, Wren-Jarvis J, Bourla I, Gerdes M, et al. Altered cerebellar white matter in sensory processing dysfunction is associated with impaired multisensory integration and attention. Front Psychol. 2020;11: 618436.

Article  Google Scholar 

Chang Y-S, Gratiot M, Owen JP, Brandes-Aitken A, Desai SS, Hill SS, et al. White matter microstructure is associated with auditory and tactile processing in children with and without sensory processing disorder. Front Neuroanat [Internet]. 2016;https://doi.org/10.3389/fnana.2015.00169/abstract

Owen JP, Marco EJ, Desai S, Fourie E, Harris J, Hill SS, et al. Abnormal white matter microstructure in children with sensory processing disorders. NeuroImage: Clinical [Internet]. 2013;2:844–53.

Tavassoli T, Brandes-Aitken A, Chu R, Porter L, Schoen S, Miller LJ, et al. Sensory over-responsivity: parent report, direct assessment measures, and neural architecture. Molecul Autism [Internet]. 2019;10:4. https://doi.org/10.1186/s13229-019-0255-7.

Article  Google Scholar 

Brandes-Aitken A, Anguera JA, Chang Y-S, Demopoulos C, Owen JP, Gazzaley A, et al. White matter microstructure associations of cognitive and visuomotor control in children: a sensory processing perspective. Front Integr Neurosci [Internet]. 2019;12:65. https://doi.org/10.3389/fnint.2018.00065/full.

Article  Google Scholar 

Shiotsu D, Jung M, Habata K, Kamiya T, Omori IM, Okazawa H, et al. Elucidation of the relationship between sensory processing and white matter using diffusion tensor imaging tractography in young adults. Sci Rep [Internet]. 2021;11:12088.

Article  CAS  Google Scholar 

Ohta H, Aoki YY, Itahashi T, Kanai C, Fujino J, Nakamura M, et al. White matter alterations in autism spectrum disorder and attention-deficit/hyperactivity disorder in relation to sensory profile. Molecul Autism [Internet]. 2020;11:77. https://doi.org/10.1186/s13229-020-00379-6.

Article  CAS  Google Scholar 

Courchesne E. Brainstem, cerebellar and limbic neuroanatomical abnormalities in autism. Curr Opin Neurobiol. 1997;7:269–78.

Article  CAS  Google Scholar 

Rimland B. Infantile autism: The syndrome and its implications for a neural theory of behavior. East Norwalk, CT, US: Appleton-Century-Crofts; 1964. p. x, 282.

Wolff JJ, Swanson MR, Elison JT, Gerig G, Pruett JR, Styner MA, et al. Neural circuitry at age 6 months associated with later repetitive behavior and sensory responsiveness in autism. Molecul Autism [Internet]. 2017;8:8. https://doi.org/10.1186/s13229-017-0126-z.

Article  Google Scholar 

Acevedo B, Aron E, Pospos S, Jessen D. The functional highly sensitive brain: a review of the brain circuits underlying sensory processing sensitivity and seemingly related disorders. Philosoph Trans Royal Soc B: Biol Sci [Internet]. 2018;373:20170161. https://doi.org/10.1098/rstb.2017.0161.

Article  Google Scholar 

Baranek GT, Watson LR, Boyd BA, Poe MD, David FJ, McGuire L. Hyporesponsiveness to social and nonsocial sensory stimuli in children with autism, children with developmental delays, and typically developing children. Dev Psychopathol [Internet]. 2013;25:307–20.

Article  Google Scholar 

Schoen SA. Physiological and behavioral differences in sensory processing: a comparison of children with autism spectrum disorder and sensory processing disorder. Front Integr Neurosci [Internet]. 2009;https://doi.org/10.3389/neuro.07.029.2009/abstract

Hannant P, Cassidy S, Van de Weyer R, Mooncey S. Sensory and motor differences in autism spectrum conditions and developmental coordination disorder in children: a cross-syndrome study. Human Move Sci [Internet]. 2018;58:108–18.

Article  Google Scholar 

Crasta JE, Salzinger E, Lin M-H, Gavin WJ, Davies PL. Sensory processing and attention profiles among children with sensory processing disorders and autism spectrum disorders. Front Integr Neurosci. 2020;14:22. https://doi.org/10.3389/fnint.2020.00022/full.

Article  Google Scholar 

Simon DM, Damiano CR, Woynaroski TG, Ibañez LV, Murias M, Stone WL, et al. Neural correlates of sensory hyporesponsiveness in toddlers at high risk for autism spectrum disorder. J Autism Develop Dis [Internet]. 2017;47:2710–22. https://doi.org/10.1007/s10803-017-3191-4.

Article  Google Scholar 

Guerrero-Gonzalez J, Surgent O, Adluru N, Kirk GR, Dean DC III, Kecskemeti SR, et al. Improving imaging of the brainstem and cerebellum in autistic children: transformation-based high-resolution diffusion MRI (TiDi-Fused) in the human brainstem. Front Integr Neurosci [Internet]. 2022;16:804743. https://doi.org/10.3389/fnint.2022.804743/full.

Article  Google Scholar 

ten Donkelaar HJ, Cruysberg JRM, Pennings R, Lammens M. Development and Developmental Disorders of the Brain Stem. Clinical Neuroembryology [Internet] 2014; https://doi.org/10.1007/978-3-642-54687-7_7

Graven SN. Early neurosensory visual development of the fetus and newborn. Clinics Perinatol. 2004;31:199–216.

Article  Google Scholar 

Hoy AR, Koay CG, Kecskemeti SR, Alexander AL. Optimization of a free water elimination two-compartment model for diffusion tensor imaging. NeuroImage [Internet]. 2014;103:323–33.

Article  Google Scholar 

Planetta PJ, Ofori E, Pasternak O, Burciu RG, Shukla P, DeSimone JC, et al. Free-water imaging in Parkinson’s disease and atypical parkinsonism. Brain [Internet]. 2016;139:49

留言 (0)

沒有登入
gif