Effects of oxidative stress caused by iron overload on arachidonic acid metabolites in MES23.5 cells

Belaidi AA and Bush AI 2016 Iron neurochemistry in Alzheimer’s disease and Parkinson’s disease: targets for therapeutics. J. Neurochem. 139 179–197

Article  CAS  Google Scholar 

Benolken RM, Anderson RE and Wheeler TG 1973 Membrane fatty acids associated with the electrical response in visual excitation. Science 182 1253–1254

Article  CAS  Google Scholar 

Brash AR 2001 Arachidonic acid as a bioactive molecule. J. Clin. Invest. 107 1339–1345

Article  CAS  Google Scholar 

Brezinski ME and Serhan CN 1990 Selective incorporation of (15S)-hydroxyeicosatetraenoic acid in phosphatidylinositol of human neutrophils: agonist-induced deacylation and transformation of stored hydroxyeicosanoids. Proc. Natl. Acad. Sci. USA 87 6248–6252

Article  CAS  Google Scholar 

Calder PC 2015 Marine omega-3 fatty acids and inflammatory processes: Effects, mechanisms and clinical relevance. Biochim. Biophys. Acta. 1851 469–484

Article  CAS  Google Scholar 

Campos SS, Rodríguez Diez G, Oresti GM and Salvador GA 2015 Dopaminergic neurons respond to iron-induced oxidative stress by modulating lipid acylation and deacylation cycles. PLoS One 10 e0130726

Article  Google Scholar 

Castellani RJ, Moreira PI, Liu G, et al. 2007 Iron: the Redox-active center of oxidative stress in Alzheimer disease. Neurochem. Res. 32 1640–1645

Article  CAS  Google Scholar 

Chifman J, Laubenbacher R and Torti SV 2014 A systems biology approach to iron metabolism. Adv. Exp. Med. Biol. 844 201–225

Article  Google Scholar 

Colom B, Bodkin JV, Beyrau M, et al. 2015 Leukotriene B4-neutrophil elastase axis drives neutrophil reverse transendothelial cell migration in vivo. Immunity 42 1075–1086

Article  CAS  Google Scholar 

Dixon SJ and Stockwell BR 2014 The role of iron and reactive oxygen species in cell death. Nat. Chem. Biol. 10 9–17

Article  CAS  Google Scholar 

Duncan RE and Bazinet RP 2010 Brain arachidonic acid uptake and turnover: implications for signaling and bipolar disorder. Curr. Opin. Clin. Nutr. Metab. Care 13 130–138

Article  CAS  Google Scholar 

Farooqui T 2008 Iron-induced oxidative stress modulates olfactory learning and memory in honeybees. Behav. Neurosci. 122 433–447

Article  CAS  Google Scholar 

Ford-Hutchinson AW, Bray MA, Doig MV, Shipley ME and Smith MJ 1980 Leukotriene B, a potent chemokinetic and aggregating substance released from polymorphonuclear leukocytes. Nature 286 264–265

Article  CAS  Google Scholar 

Fortes GB, Alves LS, de Oliveira R, et al. 2012 Heme induces programmed necrosis on macrophages through autocrine TNF and ROS production. Blood 119 2368–2375

Article  CAS  Google Scholar 

Gerlach M, Ben D-Shachar, Riederer P and Youdim MB 1994 Altered brain metabolism of iron as a cause of neurodegenerative diseases? J. Neurochem. 63 793–807

Greene ER, Huang S, Serhan CN and Panigrahy D 2011 Regulation of inflammation in cancer by eicosanoids. Prostaglandins Other Lipid Mediat. 96 27–36

Article  CAS  Google Scholar 

Gudjoncik A, Guenancia C, Zeller M, et al. 2014 Iron, oxidative stress, and redox signaling in the cardiovascular system. Mol. Nutrit. Food Res. 58 1721–1738

Article  CAS  Google Scholar 

Handa P, Morgan-Stevenson V, Maliken BD, et al. 2016 Iron overload results in hepatic oxidative stress, immune cell activation, and hepatocellular ballooning injury, leading to nonalcoholic steatohepatitis in genetically obese mice. Am. J. Physiol. Gastrointest. Liver Physiol. 310 G117–G127

Article  Google Scholar 

Henderson WR and Klebanoff SJ 1983 Leukotriene B4, C4, D4 and E4 inactivation by hydroxyl radicals. Biochem. Biophys. Res. Commun. 110 266–272

Article  CAS  Google Scholar 

Huang JT, Welch JS, Ricote M, et al. 1999 Interleukin-4-dependent production of PPAR-gamma ligands in macrophages by 12/15-lipoxygenase. Nature 400 378–382

Article  CAS  Google Scholar 

Janssen CIF and Kiliaan AJ 2014 Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog. Lipid Res. 53 doi:https://doi.org/10.1016/j.plipres.2013.10.002

Katsuki H and Okuda S 1995 Arachidonic acid as a neurotoxic and neurotrophic substance. Prog. Neurobiol. 46 607–636

Article  CAS  Google Scholar 

Koskenkorva-Frank TS, Weiss G, Koppenol WH and Burckhardt S 2013 The complex interplay of iron metabolism, reactive oxygen species, and reactive nitrogen species: insights into the potential of various iron therapies to induce oxidative and nitrosative stress. Free Radic. Biol. Med. 65 1174–1194

Article  CAS  Google Scholar 

Kruszewski M 2003 Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat. Res. 531 81–92

Article  CAS  Google Scholar 

Lämmermann T, Afonso PV, Angermann BR, et al. 2013 Neutrophil swarms require LTB4 and integrins at sites of cell death in vivo. Nature 498 371–375

Article  Google Scholar 

Lewis RA, Austen KF and Soberman RJ 1990 Leukotrienes and other products of the 5-lipoxygenase pathway. Biochemistry and relation to pathobiology in human diseases. N. Engl. J. Med. 323 645–655

Article  CAS  Google Scholar 

Li K and Reichmann H 2016 Role of iron in neurodegenerative diseases. J. Neural Transm. 123 389–399

Article  CAS  Google Scholar 

Li P, Stetler RA, Leak RK, et al. 2018 Oxidative stress and DNA damage after cerebral ischemia: Potential therapeutic targets to repair the genome and improve stroke recovery. Neuropharmacology 134 208–217

Article  CAS  Google Scholar 

Link G, Pinson A, Kahane I and Hershko C 1989 Iron loading modifies the fatty acid composition of cultured rat myocardial cells and liposomal vesicles: effect of ascorbate and alpha-tocopherol on myocardial lipid peroxidation. J. Lab. Clin. Med. 114 243–249

CAS  Google Scholar 

Liu H, Wu H, Zhu N, et al. 2020 Lactoferrin protects against iron dysregulation, oxidative stress, and apoptosis in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced Parkinson’s disease in mice. J. Neurochem. 152 397–415

Article  CAS  Google Scholar 

Lunova M, Goehring C, Kuscuoglu D, et al. 2014 Hepcidin knockout mice fed with iron-rich diet develop chronic liver injury and liver fibrosis due to lysosomal iron overload. J. Hepatol. 61 633–641

Article  CAS  Google Scholar 

Martin SA, Brash AR and Murphy RC 2016 The discovery and early structural studies of arachidonic acid. J. Lipid Res. 57 1126–1132

Article  CAS  Google Scholar 

Mattera R, Stone GP, Bahhur N and Kuryshev YA 2001 Increased release of arachidonic acid and eicosanoids in iron-overloaded cardiomyocytes. Circulation 103 2395–2401

Article  CAS  Google Scholar 

Meng FX, Hou JM and Sun TS 2017 Effect of oxidative stress induced by intracranial iron overload on central pain after spinal cord injury. J. Orthop. Surg. Res. 12 24

Article  Google Scholar 

Moore GY and Pidgeon GP 2017 Cross-Talk between cancer cells and the tumour microenvironment: the role of the 5-lipoxygenase pathway. Int. J. Mol. Sci. 18 236

Article  Google Scholar 

Nagy L, Tontonoz P, Alvarez JG, Chen H and Evans RM 1998 Oxidized LDL regulates macrophage gene expression through ligand activation of PPARγ. Cell 93 229–240

Article  CAS  Google Scholar 

Nakanishi T, Kuragano T, Nanami M, Nagasawa Y and Hasuike Y 2019 Misdistribution of iron and oxidative stress in chronic kidney disease. Free Radical Biol. Med. 133 248–253

Article  CAS  Google Scholar 

Orasanu G, Ziouzenkova O, Devchand PR, et al. 2008 The peroxisome proliferator-activated receptor-gamma agonist pioglitazone represses inflammation in a peroxisome proliferator-activated receptor-alpha-dependent manner in vitro and in vivo in mice. J. Am. Coll. Cardiol. 52 869–881

Article  CAS  Google Scholar 

Pietrangelo A 2016 Iron and the liver. Liver Int. 36 116–123

Article  CAS  Google Scholar 

Poprac P, Jomova K, Simunkova M, et al. 2017 Targeting Free Radicals in Oxidative Stress-Related Human Diseases. Trends Pharmacol. Sci. 38 592–607

Article  CAS  Google Scholar 

Qin XY, Lu J, Cai M and Kojima S 2018 Arachidonic acid suppresses hepatic cell growth through ROS-mediated activation of transglutaminase. FEBS Open Bio. 8 1703–1710

Article  CAS  Google Scholar 

Qu Y, Zhang HL, Zhang XP and Jiang HL 2018 Arachidonic acid attenuates brain damage in a rat model of ischemia/reperfusion by inhibiting inflammatory response and oxidative stress. Hum. Exp. Toxicol. 37 135–141

Article  CAS  Google Scholar 

Rand AA, Barnych B, Morisseau C, et al. 2017 Cyclooxygenase-derived proangiogenic metabolites of epoxyeicosatrienoic acids. Proc. Natl. Acad. Sci. USA 114 4370–4375

Article  CAS  Google Scholar 

Rapoport SI 2008 Brain arachidonic and docosahexaenoic acid cascades are selectively altered by drugs, diet and disease. Prostaglandins Leukot. Essent. Fatty Acids 79 153–156

Article  CAS  Google Scholar 

Schild RL, Schaiff WT, Carlson MG, et al. 2002 The activity of PPAR gamma in primary human trophoblasts is enhanced by oxidized lipids. J. Clin. Endocrinol. Metab. 87 1105–1110

CAS  Google Scholar 

Sharma A, Stevens SR, Lucas J, et al. 2017 Utility of growth differentiation factor-15, a marker of oxidative stress and inflammation, in chronic heart failure: insights from the HF-ACTIO Study N. JACC Heart Fail. 5 724–734

Article  Google Scholar 

Sonnweber T, Pizzini A, Nairz M, Weiss G and Tancevski I 2018 Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int. J. Mol Sci. 19 3285

Article 

留言 (0)

沒有登入
gif