Human centenarian–associated SIRT6 mutants modulate hepatocyte metabolism and collagen deposition in multilineage hepatic 3D spheroids

Sheedfar F, et al. Liver diseases and aging: friends or foes? Aging Cell. 2013;12(6):950–4. https://doi.org/10.1111/acel.12128.

Article  CAS  Google Scholar 

Sanyal AJ. Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 2019;16(6):377–86. https://doi.org/10.1038/s41575-019-0144-8.

Article  Google Scholar 

Ayonrinde OT. Historical narrative from fatty liver in the nineteenth century to contemporary NAFLD – Reconciling the present with the past. JHEP Reports. 2021;3(3): 100261. https://doi.org/10.1016/j.jhepr.2021.100261.

Article  Google Scholar 

Younossi ZM, et al. Global epidemiology of nonalcoholic fatty liver disease—Meta-analytic assessment of prevalence, incidence, and outcomes. 2016;64(1):73–84. https://doi.org/10.1002/hep.28431.

Kanwal F, et al. Preparing for the NASH Epidemic: A Call to Action. Gastroenterology. 2021;161(3):1030-1042.e8. https://doi.org/10.1053/j.gastro.2021.04.074.

Article  Google Scholar 

Estes C, et al. Modeling NAFLD disease burden in China, France, Germany, Italy, Japan, Spain, United Kingdom, and United States for the period 2016–2030. J Hepatol. 2018;69(4):896–904. https://doi.org/10.1016/j.jhep.2018.05.036.

Article  Google Scholar 

Tilg H, et al. Non-alcoholic fatty liver disease: the interplay between metabolism, microbes and immunity. Nat Metab. 2021;3(12):1596–607. https://doi.org/10.1038/s42255-021-00501-9.

Article  CAS  Google Scholar 

Eslam M, et al. A new definition for metabolic dysfunction-associated fatty liver disease: An international expert consensus statement. J Hepatol. 2020. https://doi.org/10.1016/j.jhep.2020.03.039.

Article  Google Scholar 

Gores GJ. Decade in review-hepatocellular carcinoma: HCC-subtypes, stratification and sorafenib. Nat Rev Gastroenterol Hepatol. 2014;11(11):645–7. https://doi.org/10.1038/nrgastro.2014.157.

Article  CAS  Google Scholar 

Reeves HL, Zaki MY, Day CP. Hepatocellular Carcinoma in Obesity, Type 2 Diabetes, and NAFLD. Dig Dis Sci. 2016;61(5):1234–45. https://doi.org/10.1007/s10620-016-4085-6.

Article  CAS  Google Scholar 

Mazzoccoli G, et al. Biology, Epidemiology, Clinical Aspects of Hepatocellular Carcinoma and the Role of Sorafenib. Curr Drug Targets. 2016;17(7):783–99. https://doi.org/10.2174/1389450117666151209120831.

Article  CAS  Google Scholar 

Houtkooper RH, Pirinen E, Auwerx J. Sirtuins as regulators of metabolism and healthspan. Nat Rev Mol Cell Biol. 2012;13(4):225–38. https://doi.org/10.1038/nrm3293.

Article  CAS  Google Scholar 

Tonkin J, et al. SIRT1 signaling as potential modulator of skeletal muscle diseases. Curr Opin Pharmacol. 2012;12(3):372–6. https://doi.org/10.1016/j.coph.2012.02.010.

Article  CAS  Google Scholar 

Kanfi Y, et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature. 2012;483(7388):218–21. https://doi.org/10.1038/nature10815.

Article  CAS  Google Scholar 

Korotkov A, Seluanov A, Gorbunova V. Sirtuin 6: linking longevity with genome and epigenome stability. Trends Cell Biol. 2021;31(12):994–1006. https://doi.org/10.1016/j.tcb.2021.06.009.

Article  CAS  Google Scholar 

Tian X, et al. SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species. Cell. 2019;177(3):622-638.e22. https://doi.org/10.1016/j.cell.2019.03.043.

Article  CAS  Google Scholar 

Sundaresan NR, et al. The sirtuin SIRT6 blocks IGF-Akt signaling and development of cardiac hypertrophy by targeting c-Jun. Nat Med. 2012;18(11):1643–50. https://doi.org/10.1038/nm.2961.

Article  CAS  Google Scholar 

Roichman A, et al. SIRT6 Overexpression Improves Various Aspects of Mouse Healthspan. J Gerontol A Biol Sci Med Sci. 2017;72(5):603–15. https://doi.org/10.1093/gerona/glw152.

Article  CAS  Google Scholar 

Kim HS, et al. Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis. Cell Metab. 2010;12(3):224–36. https://doi.org/10.1016/j.cmet.2010.06.009.

Article  CAS  Google Scholar 

Zhong X, et al. SIRT6 Protects Against Liver Fibrosis by Deacetylation and Suppression of SMAD3 in Hepatic Stellate Cells. Cell Mol Gastroenterol Hepatol. 2020;10(2):341–64. https://doi.org/10.1016/j.jcmgh.2020.04.005.

Article  Google Scholar 

Kuang J, et al. Fat-Specific Sirt6 Ablation Sensitizes Mice to High-Fat Diet-Induced Obesity and Insulin Resistance by Inhibiting Lipolysis. Diabetes. 2017;66(5):1159–71. https://doi.org/10.2337/db16-1225.

Article  CAS  Google Scholar 

Xiong X, et al. SIRT6 protects against palmitate-induced pancreatic β-cell dysfunction and apoptosis. J Endocrinol. 2016;231(2):159–65. https://doi.org/10.1530/joe-16-0317.

Article  CAS  Google Scholar 

D’Onofrio N, Servillo L, Balestrieri ML. SIRT1 and SIRT6 Signaling Pathways in Cardiovascular Disease Protection. Antioxid Redox Signal. 2018;28(8):711–32. https://doi.org/10.1089/ars.2017.7178.

Article  CAS  Google Scholar 

Yao L, et al. Cold-Inducible SIRT6 Regulates Thermogenesis of Brown and Beige Fat. Cell Rep. 2017;20(3):641–54. https://doi.org/10.1016/j.celrep.2017.06.069.

Article  CAS  Google Scholar 

Kanfi Y, et al. SIRT6 protects against pathological damage caused by diet-induced obesity. Aging Cell. 2010;9(2):162–73. https://doi.org/10.1111/j.1474-9726.2009.00544.x.

Article  CAS  Google Scholar 

Ka SO, et al. Hepatocyte-specific sirtuin 6 deletion predisposes to nonalcoholic steatohepatitis by up-regulation of Bach1, an Nrf2 repressor. Faseb j. 2017;31(9):3999–4010. https://doi.org/10.1096/fj.201700098RR.

Article  CAS  Google Scholar 

Chen L, et al. Hepatocyte-specific Sirt6 deficiency impairs ketogenesis. J Biol Chem. 2019;294(5):1579–89. https://doi.org/10.1074/jbc.RA118.005309.

Article  CAS  Google Scholar 

Bang IH, et al. Deacetylation of XBP1s by sirtuin 6 confers resistance to ER stress-induced hepatic steatosis. Exp Mol Med. 2019;51(9):1–11. https://doi.org/10.1038/s12276-019-0309-0.

Article  CAS  Google Scholar 

Hirvonen K, et al. SIRT6 polymorphism rs117385980 is associated with longevity and healthy aging in Finnish men. BMC Med Genet. 2017;18(1):41. https://doi.org/10.1186/s12881-017-0401-z.

Article  CAS  Google Scholar 

Simon M, et al. A rare human centenarian variant of SIRT6 enhances genome stability and interaction with Lamin A. EMBO J. 2022;41(21): e110393. https://doi.org/10.15252/embj.2021110393.

Article  CAS  Google Scholar 

Atzmon G, et al. Clinical phenotype of families with longevity. J Am Geriatr Soc. 2004;52(2):274–7. https://doi.org/10.1111/j.1532-5415.2004.52068.x.

Article  Google Scholar 

Atzmon G, et al. Evolution in health and medicine Sackler colloquium: Genetic variation in human telomerase is associated with telomere length in Ashkenazi centenarians. Proc Natl Acad Sci U S A. 2010;107 Suppl 1(Suppl 1):1710–7. https://doi.org/10.1073/pnas.0906191106.

TenNapel MJ, et al. SIRT6 Minor Allele Genotype Is Associated with >5-Year Decrease in Lifespan in an Aged Cohort. PLoS ONE. 2014;9(12): e115616. https://doi.org/10.1371/journal.pone.0115616.

Article  CAS  Google Scholar 

Kodo K, et al. iPSC-derived cardiomyocytes reveal abnormal TGF-beta signalling in left ventricular non-compaction cardiomyopathy. Nat Cell Biol. 2016;18(10):1031–42. https://doi.org/10.1038/ncb3411.

Article  CAS  Google Scholar 

Vinciguerra M. Old age and steatohepatitis: a dangerous liaison? Hepatology. 2013;58(2):830–1. https://doi.org/10.1002/hep.26212.

Article  Google Scholar 

Ramos MJ, et al. In vitro models for non-alcoholic fatty liver disease: Emerging platforms and their applications. iScience. 2022;25(1):103549. https://doi.org/10.1016/j.isci.2021.103549.

Article  Google Scholar 

Pingitore P, et al. Human Multilineage 3D Spheroids as a Model of Liver Steatosis and Fibrosis. Int J Mol Sci. 2019;20(7):1629.

Article  CAS  Google Scholar 

De Gottardi A, et al. Microarray analyses and molecular profiling of steatosis induction in immortalized human hepatocytes. Lab Invest. 2007;87(8):792–806. https://doi.org/10.1038/labinvest.3700590.

Article  CAS  Google Scholar 

Giallongo S, et al. Histone Variant macroH2A1.1 Enhances Nonhomologous End Joining-dependent DNA Double-strand-break Repair and Reprogramming Efficiency of Human iPSCs. Stem Cells. 2022;40(1):35–48. https://doi.org/10.1093/stmcls/sxab004.

Article  Google Scholar 

Tiscornia G, Singer O, Verma IM. Production and purification of lentiviral vectors. Nat Protoc. 2006;1(1):241–5. https://doi.org/10.1038/nprot.2006.37.

Article  CAS  Google Scholar 

Lo Re O, et al. Histone variant macroH2A1 rewires carbohydrate and lipid metabolism of hepatocellular carcinoma cells towards cancer stem cells. Epigenetics. 2018;13(8):829–45. https://doi.org/10.1080/15592294.2018.1514239.

Article  Google Scholar 

Lo Re O, et al. Induction of cancer cell stemness by depletion of macrohistone H2A1 in hepatocellular carcinoma. Hepatology. 2018;67(2):636–50. https://doi.org/10.1002/hep.29519.

Article  CAS  Google Scholar 

Pazienza V, et al. SIRT1-metabolite binding histone macroH2A1.1 protects hepatocytes against lipid accumulation. Aging (Albany NY). 2014;6(1):35–47. https://doi.org/10.18632/aging.100632.

Article  CAS  Google Scholar 

Demolli S, et al. MicroRNA-30 mediates anti-inflammatory effects of shear stress and KLF2 via repression of angiopoietin 2. J Mol Cell Cardiol. 2015;88:111–9. https://doi.org/10.1016/j.yjmcc.2015.10.009.

Article  CAS  Google Scholar 

Frohlich J, et al. GDF11 rapidly increases lipid accumulation in liver cancer cells through ALK5-dependent signaling. Biochim Biophys Acta Mol Cell Biol Lipids. 2021;1866(6): 158920. https://doi.org/10.1016/j.bbalip.2021.158920.

Article  CAS  Google Scholar 

Martínez-Arranz I, et al. Enhancing metabolomics research through data mining. J Proteomics. 2015;127:275–88. https://doi.org/10.1016/j.jprot.2015.01.019.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif