Osteoporosis and Bone Marrow Adipose Tissue

Fazeli PK, Horowitz MC, MacDougald OA, et al. Marrow fat and bone--new perspectives. J Clin Endocrinol Metab. 2013;98(3):935–45.

Article  CAS  Google Scholar 

Lecka-Czernik B, Rosen CJ. Energy excess, glucose utilization, and skeletal remodeling: new insights. J Bone Miner Res. 2015;30(8):1356–61.

Article  CAS  Google Scholar 

Craft CS, Li Z, MacDougald OA, Scheller EL. Molecular differences between subtypes of bone marrow adipocytes. Curr Mol Biol Rep. 2018;4(1):16–23.

Article  Google Scholar 

• Cawthorn WP, Scheller EL, Learman BS, Parlee SD, Simon BR, Mori H, Ning X, Bree AJ, Schell B, Broome DT, Soliman SS, DelProposto J, Lumeng CN, Mitra A, Pandit SV, Gallagher KA, Miller JD, Krishnan V, Hui SK, et al. Bone marrow adipose tissue is an endocrine organ that contributes to increased circulating adiponectin during caloric restriction. Cell Metab. 2014;20(2):368–75.

Article  CAS  Google Scholar 

•• Attané C, Estève D, Chaoui K, et al. Human bone marrow is comprised of adipocytes with specific lipid metabolism. Cell Rep. 2020;30(4):949-958.e6. This study demonstrates that bone marrow adipocytes show distinct lipid metabolism compared to subcutaneous adipocytes with decreased lipolysis and enriched cholesterol metabolism.

•• Suchacki KJ, Tavares AAS, Mattiucci D, et al. Bone marrow adipose tissue is a unique adipose subtype with distinct roles in glucose homeostasis. Nat Commun. 2020;11(1):3097. This study reports that human BMAT is functionally distinct from brown adipose tissue with higher basal glucose uptake but no response to insulin.

•• Tratwal J, Labella R, Bravenboer N, et al. Reporting guidelines, review of methodological standards, and challenges toward harmonization in bone marrow adiposity research. Report of the Methodologies Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne). 2020;11:65. BMAS methodology working group: Review of the literature and expert opinion on methodology of BMAT histomorphometry and BMAT imaging.

• Lucas S, Tencerova M, von der Weid B, et al. Guidelines for biobanking of bone marrow adipose tissue and related cell types: Report of the Biobanking Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne). 2021;12:744527. BMAS Biobanking working group: review on the literaute on biobanking, methods used for collection of human BMAds and BMSCs,and comparison of the protocol steps and importance for standarization of BMAT collection for future biobanking.

Paccou J, Penel G, Chauveau C, Cortet B, Hardouin P. Marrow adiposity and bone: Review of clinical implications. Bone. 2019;118:8–15.

Article  Google Scholar 

• Woods G, Ewing S, Schafer A et al. Saturated and unsaturated bone marrow lipids have distinct effects on bone density and fracture risk in older adults. J Bone Miner Res. 2022;37:700-710. Higher BMAT saturated lipid content is associated with higher prevalent and incident vertebral fractures, while higher BMAT unsaturated lipid content is associated with lower incident vertebral fractures.

Woods GN, Ewing SK, Sigurdsson S, Kado DM, Eiriksdottir G, Gudnason V, Hue TF, Lang TF, Vittinghoff E, Harris TB, Rosen C, Xu K, Li X, Schwartz AV. Greater bone marrow adiposity predicts bone loss in older women. J Bone Miner Res. 2020;35:326–32.

Article  Google Scholar 

Kugel H, Jung C, Schulte O, Heindel W. Age- and sex-specific differences in the 1H-spectrum of vertebral bone marrow. J Magn Reson Imaging. 2001;13:263–8.

Article  CAS  Google Scholar 

Griffith JF, Yeung DK, Ma HT, Leung JC, Kwok TC, Leung PC. Bone marrow fat content in the elderly: a reversal of sex difference seen in younger subjects. J Magn Reson Imaging. 2012;36:225–30.

Article  Google Scholar 

Beekman KM, Regenboog M, Nederveen AJ, et al. Gender- and age-associated differences in bone marrow adipose tissue and bone marrow fat unsaturation throughout the skeleton, quantified using chemical shift encoding-based water-fat MRI. Front Endocrinol (Lausanne). 2022;13:815835.

Hwang S, Panicek DM. Magnetic resonance imaging of bone marrow in oncology, Part 1. Skeletal Radiol. 2007;36:913–20.

Article  Google Scholar 

Moore SG, Dawson KL. Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology. 1990;175:219–23.

Article  CAS  Google Scholar 

•• Bravenboer N, Bredella MA, Chauveau C, et al. Standardized nomenclature, abbreviations, and units for the study of bone marrow adiposity: Report of the Nomenclature Working Group of the International Bone Marrow Adiposity Society. Front Endocrinol (Lausanne). 2020;10:923. Reference paper for nomenclature, units and symbols for the study of bone marrow adipose tissue.

Dello Spedale Venti M, Palmisano B, Donsante S, et al. Morphological and immunophenotypical changes of human bone marrow adipocytes in marrow metastasis and myelofibrosis. Front Endocrinol (Lausanne). 2022;13:882379.

Beekman KM, Veldhuis-Vlug AG, den Heijer M, Maas M, Oleksik AM, Tanck MW, Ott SM, van 't Hof RJ, Lips P, Bisschop PH, Bravenboer N. The effect of raloxifene on bone marrow adipose tissue and bone turnover in postmenopausal women with osteoporosis. Bone. 2019;118:62–8.

Article  CAS  Google Scholar 

Brooks JSJ, Persia PM. Adipose tissue. In: Mills SE, editor. Histology for pathologists. 4th edition. Philadelphia, PA 19103 USA: Lippincott Williams & Wilkins; 2012. pp. 179-210

Hardouin P, Rharass T, Lucas S. Bone marrow adipose tissue: to be or not to be a typical adipose tissue? Front Endocrinol (Lausanne). 2016;7:85.

Arentsen L, Yagi M, Takahashi Y, Bolan PJ, White M, Yee D, Hui S. Validation of marrow fat assessment using noninvasive imaging with histologic examination of human bone samples. Bone. 2015;72:118–22.

Article  Google Scholar 

Reeder SB, Hu HH, Sirlin CB. Proton density fat-fraction: a standardized MR-based biomarker of tissue fat concentration. J Magn Reson Imaging. 2012;36(5):1011–4.

Article  Google Scholar 

Hernando D, Sharma SD, Aliyari Ghasabeh M, Alvis BD, Arora SS, Hamilton G, Pan L, Shaffer JM, Sofue K, Szeverenyi NM, Welch EB, Yuan Q, Bashir MR, Kamel IR, Rice MJ, Sirlin CB, Yokoo T, Reeder SB. Multisite, multivendor validation of the accuracy and reproducibility of proton-density fat-fraction quantification at 1.5T and 3T using a fat-water phantom. Magn Reson Med. 2017;77(4):1516–24.

Article  CAS  Google Scholar 

Karampinos DC, Ruschke S, Dieckmeyer M, Diefenbach M, Franz D, Gersing AS, Krug R, Baum T. Quantitative MRI and spectroscopy of bone marrow. J Magn Reson Imaging. 2018;47(2):332–53.

Article  Google Scholar 

Martel D, Leporq B, Saxena A, Belmont HM, Turyan G, Honig S, Regatte RR, Chang G. 3T chemical shift-encoded MRI: detection of altered proximal femur marrow adipose tissue composition in glucocorticoid users and validation with magnetic resonance spectroscopy. J Magn Reson Imaging. 2019;50(2):490–6.

Article  Google Scholar 

Li X, Kuo D, Schafer AL, Porzig A, Link TM, Black D, Schwartz AV. Quantification of vertebral bone marrow fat content using 3 Tesla MR spectroscopy: reproducibility, vertebral variation, and applications in osteoporosis. J Magn Reson Imaging. 2011;33(4):974–9.

Article  Google Scholar 

• Sollmann N, Löffler MT, Kronthaler S, et al. MRI-based quantitative osteoporosis imaging at the spine and femur. J Magn Reson Imaging. 2021;54(1):12-35. Review of the literature on quantitative MRI in osteoporosis of the spine and femur.

Ruschke S, Karampinos DC. Single-voxel short-TR multi-TI multi-TE STEAM MRS for water-fat relaxometry. Magn Reson Med. 2022;87(6):2587–99.

Article  Google Scholar 

Ruschke S, Syväri J, Dieckmeyer M, Junker D, Makowski MR, Baum T, Karampinos DC. Physiological variation of the vertebral bone marrow water T2 relaxation time. NMR Biomed. 2021;34(2):e4439.

Article  CAS  Google Scholar 

•• Ruschke S, Karampinos DC. ALFONSO: A versatiLe Formulation fOr N-dimensional Signal mOdel fitting of MR spectroscopy data and its application in MRS of body lipids. Proceedings of the 31st Joint Annual Meeting of the International Society for Magnetic Resonance in Medicine and the European Society for Magnetic Resonance in Medicine and Biology; 2022:2776. ALFONSO matlab script from Karampinos and coworkers, could greatly improve accurate quantification and standardization of PDFF measurements by 1H-MRS.

Bredella MA, Daley SM, Kalra MK, Brown JK, Miller KK, Torriani M. Marrow adipose tissue quantification of the lumbar spine by using dual-energy CT and single-voxel (1)H MR spectroscopy: a feasibility study. Radiology. 2015;277(1):230–5.

Article  Google Scholar 

Arentsen L, Hansen KE, Yagi M, Takahashi Y, Shanley R, McArthur A, Bolan P, Magome T, Yee D, Froelich J, Hui SK. Use of dual-energy computed tomography to measure skeletal-wide marrow composition and cancellous bone mineral density. J Bone Miner Metab. 2017;35(4):428–36.

Article  CAS  Google Scholar 

Sfeir JG, Drake MT, Atkinson EJ, Achenbach SJ, Camp JJ, Tweed AJ, McCready LK, Yu L, Adkins MC, Amin S, Khosla S. Evaluation of cross-sectional and longitudinal changes in volumetric bone mineral density in postmenopausal women using single- versus dual-energy quantitative computed tomography. Bone. 2018;112:145–52.

Article  Google Scholar 

Kay FU, Ho V, Dosunmu EB, Chhabra A, Brown K, Duan X, Öz OK. Quantitative CT detects undiagnosed low bone mineral density in oncologic patients imaged with 18F-FDG PET/CT. Clin Nucl Med. 2021;46(1):8–15.

Article  Google Scholar 

Yeung DKW, Griffith JF, Antonio GE, Lee FKH, Woo J, Leung PC. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study. J Magn Reson Imaging. 2005;22:279–85.

Article  Google Scholar 

Schwartz AV, Sigurdsson S, Hue TF, Lang TF, Harris TB, Rosen CJ, Vittinghoff E, Siggeirsdottir K, Sigurdsson G, Oskarsdottir D, Shet K, Palermo L, Gudnason V, Li X. Vertebral bone marrow fat associated with lower trabecular BMD and prevalent vertebral fracture in older adults. J Clin Endocrinol Metab. 2013;98:2294–300.

Article  CAS  Google Scholar 

Gassert FT, Kufner A, Gassert FG, Leonhardt Y, Kronthaler S, Schwaiger BJ, Boehm C, Makowski MR, Kirschke JS, Baum T, Karampinos DC, Gersing AS. 1MR-based proton density fat fraction (PDFF) of the vertebral bone marrow differentiates between patients with and without osteoporotic vertebral fractures. Osteoporos Int. 2022;33:487–96.

Article  CAS  Google Scholar 

Patsch JM, Li X, Baum T, Yap SP, Karampinos DC, Schwartz AV, Link TM. Bone marrow fat composition as a novel imaging biomarker in postmenopausal women with prevalent fragility fractures. J Bone Miner Res. 2013;28:1721–8.

Article  Google Scholar 

Cordes C, Dieckmeyer M, Ott B, Shen J, Ruschke S, Settles M, Eichhorn C, Bauer JS, Kooijman H, Rummeny EJ, Skurk T, Baum T, Hauner H, Karampinos DC. MR-detected changes in liver fat, abdominal fat, and vertebral bone marrow fat after a four-week calorie restriction in obese women. J Magn Reson Imaging. 2015;42(5):1272–80.

Article  Google Scholar 

•• Fazeli PK, Bredella MA, Pachon-Peña G, et al. The dynamics of human bone marrow adipose tissue in response to feeding and fasting. JCI Insight. 2021;6(12):e138636. A clinical study to bring first evidence in humans that interventional treatment modulates characteristics of BMAT.

•• Bredella MA, Buckless C, Fazeli PK, et al. Bone marrow adipose tissue composition following high-caloric feeding and fasting. Bone. 2021;152:116093. A clinical study demonstrates in humans that interventional treatment improves BMAT composition.

Belavy DL, Quittner MJ, Ridgers ND, Shiekh A, Rantalainen T, Trudel G. Specific modulation of vertebral marrow adipose tissue by physical activity. J Bone Miner Res. 2018;33(4):651–7.

Article  CAS  Google Scholar 

Bertheau RC, Lorbeer R, Nattenmüller J, Wintermeyer E, Machann J, Linkohr B, Peters A, Bamberg F, Schlett CL. Bone marrow fat fraction assessment in regard to physical activity: KORA FF4–3-T MR imaging in a population-based cohort. Eur Radiol. 2020;30(6):3417–28.

Article  CAS  Google Scholar 

Belavy DL, Miller CT, Owen PJ, Rantalainen T, Connell D, Hahne AJ, Ford JJ, Trudel G. Exercise may impact on lumbar vertebrae marrow adipose tissue: Randomised controlled trial. Bone. 2022;157:116338.

Article  Google Scholar 

Lecka-Czernik B, Baroi S, Stechschulte LA, Chougule AS. Marrow fat-a new target to treat bone diseases? Curr Osteoporos Rep. 2018;16(2):123–9.

Article  Google Scholar 

Singh L, Tyagi S, Myers D, Duque G. Good, bad, or ugly: the biological roles of bone marrow fat. Curr Osteoporos Rep. 2018;16(2):130–7.

Article  Google Scholar 

Chen J, Zhang H, Wu X, Wang F, Wang Y, Gao Q, Liu H, Hu Y, Su J, Jing Y. PTHG2 reduces bone loss in ovariectomized mice by directing bone marrow mesenchymal stem cell fate. Stem Cells Int. 2021;2021:8546739.

Article  Google Scholar 

Balani DH, Kronenberg HM. Withdrawal of parathyroid hormone after prolonged administration leads to adipogenic differentiation of mesenchymal precursors in vivo. Bone. 2019;118:16–9.

Article  CAS  Google Scholar 

Rickard DJ, Wang FL, Rodriguez-Rojas AM, Wu Z, Trice WJ, Hoffman SJ, Votta B, Stroup GB, Kumar S, Nuttall ME. Intermittent treatment with parathyroid hormone (PTH) as well as a non-peptide small molecule agonist of the PTH1 receptor inhibits adipocyte differentiation in human bone marrow stromal cells. Bone. 2006;39(6):1361-72. 6.

Yang Y, Luo X, Xie X, Yan F, Chen G, Zhao W, Jiang Z, Fang C, Shen J. Influences of teriparatide administration on marrow fat content in postmenopausal osteopenic women using MR spectroscopy. Climacteric. 2016;19(3):285–91.

Article  CAS  Google Scholar 

Li GW, Xu Z, Chang SX, Zhou L, Wang XY, Nian H, Shi X. Influence of early zoledronic acid administration on bone marrow fat in ovariectomized rats. Endocrinology. 2014;155(12):4731–8.

Article  Google Scholar 

Li GW, Chang SX, Fan JZ, Tian YN, Xu Z, He YM. Marrow adiposity recovery after early zoledronic acid treatment of glucocorticoid-induced bone loss in rabbits assessed by magnetic resonance spectroscopy. Bone. 2013;52(2):668–75.

Article  CAS 

留言 (0)

沒有登入
gif