PSMC3 promotes RNAi by maintaining AGO2 stability through USP14

Bohmert K, Camus I, Bellini C, Bouchez D, Caboche M, Benning C. AGO1 defines a novel locus of Arabidopsis controlling leaf development. EMBO J. 1998;17(1):170–80. https://doi.org/10.1093/emboj/17.1.170.

Article  CAS  Google Scholar 

Sasaki T, Shiohama A, Minoshima S, Shimizu N, Sasaki T, Shiohama A, Minoshima S. Shimizu N Identification of eight members of the Argonaute family in the human genome. Genomics. 2003;82(3):323–30.

Article  CAS  Google Scholar 

Höck J, Meister G. The Argonaute protein family. Genome Biol. 2008;9(2):210. https://doi.org/10.1186/gb-2008-9-2-210.

Article  CAS  Google Scholar 

Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet. 2013;14(7):447–59. https://doi.org/10.1038/nrg3462.

Article  CAS  Google Scholar 

Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science. 2004;305(5689):1437–41. https://doi.org/10.1126/science.1102513.

Article  CAS  Google Scholar 

Tolia NH, Joshua-Tor L. Slicer and the argonautes. Nat Chem Biol. 2007;106(1):36–43.

Article  Google Scholar 

Song JJ, Smith SK, Hannon GJ, Joshua-Tor L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science. 2004;305(5689):1434–7. https://doi.org/10.1126/science.1102514.

Article  CAS  Google Scholar 

Schirle NT, MacRae IJ. The crystal structure of human Argonaute2. Science. 2012;336(6084):1037–40. https://doi.org/10.1126/science.1221551.

Article  CAS  Google Scholar 

Jinek M, Doudna JA. A three-dimensional view of the molecular machinery of RNA interference. Nature. 2009;457(7228):405–12. https://doi.org/10.1038/nature07755.

Article  CAS  Google Scholar 

Frank F, Sonenberg N, Nagar B. Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature. 2010;465(7299):818–22. https://doi.org/10.1038/nature09039.

Article  CAS  Google Scholar 

Janowski BA, Huffman KE, Schwartz JC, Ram R, Nordsell R, Shames DS, et al. Involvement of AGO1 and AGO2 in mammalian transcriptional silencing. Nat Struct Mol Biol. 2006;13(9):787–92. https://doi.org/10.1038/nsmb1140.

Article  CAS  Google Scholar 

Ameyar-Zazoua M, Rachez C, Souidi M, Robin P, Fritsch L, Young R, et al. Argonaute proteins couple chromatin silencing to alternative splicing. Nat Struct Mol Biol. 2012;19(10):998–1004. https://doi.org/10.1038/nsmb.2373.

Article  CAS  Google Scholar 

Batsché E, Ameyar-Zazoua M. The influence of Argonaute proteins on alternative RNA splicing. Wiley Interdiscip Rev RNA. 2015;6(1):141–56. https://doi.org/10.1002/wrna.1264.

Article  CAS  Google Scholar 

Fu Y, Chen L, Chen C, Ge Y, Kang M, Song Z, et al. Crosstalk between alternative polyadenylation and miRNAs in the regulation of protein translational efficiency. Genome Res. 2018;28(11):1656–63. https://doi.org/10.1101/gr.231506.117.

Article  CAS  Google Scholar 

Berrens RV, Andrews S, Spensberger D, Santos F, Dean W, Gould P, et al. An endosiRNA-based repression mechanism counteracts transposon activation during global DNA demethylation in embryonic stem cells. Cell Stem Cell. 2017;21(5):694–703.e7. https://doi.org/10.1016/j.stem.2017.10.004.

Article  CAS  Google Scholar 

Iwasaki S, Tomari Y. Argonaute-mediated translational repression (and activation). Fly. 2009;3(3):204–6.

Article  Google Scholar 

Kim BS, Im YB, Jung SJ, Park CH, Kang SK. Argonaute2 regulation for K channel-mediated human adipose tissue-derived stromal cells self-renewal and survival in nucleus. Stem Cells Dev. 2012;21(10):1736–48. +https://doi.org/10.1089/scd.2011.0388.

Article  CAS  Google Scholar 

Wilson RC, Doudna JA. Molecular mechanisms of RNA interference. Ann Rev Biophys. 2013;42:217–39. https://doi.org/10.1146/annurev-biophys-083012-130404.

Article  CAS  Google Scholar 

Bartoszewski R, Sikorski AF. Editorial focus: entering into the non-coding RNA era. Cell Mol Biol Lett. 2018;23:45. https://doi.org/10.1186/s11658-018-0111-3.

Article  CAS  Google Scholar 

Wang Y, Sheng G, Juranek S, Tuschl T, Patel DJ. Structure of the guide-strand-containing Argonaute silencing complex. Nature. 2008;456(7219):209–13. https://doi.org/10.1038/nature07315.

Article  CAS  Google Scholar 

Kiriakidou M, Tan GS, Lamprinaki S, De Planell-Saguer M, Nelson PT, Mourelatos Z. An mRNA m7G cap binding-like motif within human Ago2 represses translation. Cell. 2007;129(6):1141–51. https://doi.org/10.1016/j.cell.2007.05.016.

Article  CAS  Google Scholar 

De N, Macrae IJ. Purification and assembly of human Argonaute, Dicer, and TRBP complexes. Methods Mol Biol (Clifton NJ). 2011;725:107–19. https://doi.org/10.1007/978-1-61779-046-1_8.

Article  CAS  Google Scholar 

Meister G, Landthaler M, Peters L, Chen PY, Urlaub H, Lührmann R, et al. Identification of novel Argonaute-associated proteins. Curr Biol. 2005;15(23):2149–55. https://doi.org/10.1016/j.cub.2005.10.048.

Article  CAS  Google Scholar 

Peters L, Meister G. Argonaute proteins: mediators of RNA silencing. Mol Cell. 2007;26(5):611–23. https://doi.org/10.1016/j.molcel.2007.05.001.

Article  CAS  Google Scholar 

Tahbaz N, Kolb FA, Zhang H, Jaronczyk K, Filipowicz W, Hobman TC. Characterization of the interactions between mammalian PAZ PIWI domain proteins and Dicer. EMBO Rep. 2004;5(2):189–94. https://doi.org/10.1038/sj.embor.7400070.

Article  CAS  Google Scholar 

Lima WF, Wu H, Nichols JG, Sun H, Murray HM, Crooke ST. Binding and cleavage specificities of human Argonaute2. J Biol Chem. 2009;284(38):26017–28. https://doi.org/10.1074/jbc.M109.010835.

Article  CAS  Google Scholar 

Lian SL, Li S, Abadal GX, Pauley BA, Fritzler MJ, Chan EK. The C-terminal half of human Ago2 binds to multiple GW-rich regions of GW182 and requires GW182 to mediate silencing. RNA (New York NY). 2009;15(5):804–13. https://doi.org/10.1261/rna.1229409.

Article  CAS  Google Scholar 

Ohana B, Moore PA, Ruben SM, Southgate CD, Green MR, Rosen CA. The type 1 human immunodeficiency virus Tat binding protein is a transcriptional activator belonging to an additional family of evolutionarily conserved genes. Proc Natl Acad Sci U S A. 1993;90(1):138–42. https://doi.org/10.1073/pnas.90.1.138.

Article  CAS  Google Scholar 

Pollice A, Sepe M, Villella VR, Tolino F, Vivo M, Calabrò V, et al. TBP-1 protects the human oncosuppressor p14ARF from proteasomal degradation. Oncogene. 2007;26(35):5154–62. https://doi.org/10.1038/sj.onc.1210313.

Article  CAS  Google Scholar 

Goodkin ML, Ting AT, Blaho JA. NF-kappaB is required for apoptosis prevention during herpes simplex virus type 1 infection. J Virol. 2003;77(13):7261–80. https://doi.org/10.1128/jvi.77.13.7261-7280.2003.

Article  CAS  Google Scholar 

Huang W, Wang SL, Lozano G, de Crombrugghe B. cDNA library screening using the SOS recruitment system. BioTechniques. 2001;30(1):94–8. https://doi.org/10.2144/01301st06.

Article  CAS  Google Scholar 

Lee Y, Hur I, Park SY, Kim YK, Suh MR, Kim VN. The role of PACT in the RNA silencing pathway. EMBO J. 2006;25(3):522–32. https://doi.org/10.1038/sj.emboj.7600942.

Article  CAS  Google Scholar 

Höck J, Weinmann L, Ender C, Rüdel S, Kremmer E, Raabe M, et al. Proteomic and functional analysis of Argonaute-containing mRNA–protein complexes in human cells. EMBO Rep. 2007;8(11):1052–60. https://doi.org/10.1038/sj.embor.7401088.

Article  CAS  Google Scholar 

Yi T, Arthanari H, Akabayov B, Song H, Papadopoulos E, Qi HH, et al. eIF1A augments Ago2-mediated Dicer-independent miRNA biogenesis and RNA interference. Nat Commun. 2015;6:7194. https://doi.org/10.1038/ncomms8194.

Article  Google Scholar 

Bottini S, Hamouda-Tekaya N, Mategot R, Zaragosi LE, Audebert S, Pisano S, et al. Post-transcriptional gene silencing mediated by microRNAs is controlled by nucleoplasmic Sfpq. Nat Commun. 2017;8(1):1189. https://doi.org/10.1038/s41467-017-01126-x.

Article  CAS  Google Scholar 

Pollice A, Nasti V, Ronca R, Vivo M, Lo Iacono M, Calogero R, et al. Functional and physical interaction of the human ARF tumor suppressor with Tat-binding protein-1. J Biol Chem. 2004;279(8):6345–53. https://doi.org/10.1074/jbc.M310957200.

Article  CAS  Google Scholar 

Ahlenstiel CL, Lim HG, Cooper DA, Ishida T, Kelleher AD, Suzuki K. Direct evidence of nuclear Argonaute distribution during transcriptional silencing links the actin cytoskeleton to nuclear RNAi machinery in human cells. Nucleic Acids Res. 2012;40(4):1579–95. https://doi.org/10.1093/nar/gkr891.

Article  CAS  Google Scholar 

Gagnon KT, Corey DR. Argonaute and the nuclear RNAs: new pathways for RNA-mediated control of gene expression. Nucleic acid therapeutics. 2012;22(1):3–16. https://doi.org/10.1089/nat.2011.0330.

Article  CAS  Google Scholar 

Ohrt T, Muetze J, Svoboda P, Schwille P. Intracellular localization and routing of miRNA and RNAi pathway components. Curr Top Med Chem. 2012;12(2):79–88. https://doi.org/10.2174/156802612798919132.

Article  CAS  Google Scholar 

Gagnon KT, Li L, Janowski BA, Corey DR. Analysis of nuclear RNA interference in human cells by subcellular fractionation and Argonaute loading. Nat Protoc. 2014;9(9):2045–60. https://doi.org/10.1038/nprot.2014.135.

Article  CAS  Google Scholar 

Corn PG, McDonald ER 3rd, Herman JG, El-Deiry WS. Tat-binding protein-1, a component of the 26S proteasome, contributes to the E3 ubiquitin ligase function of the von Hippel-Lindau protein. Nat Genet. 2003;35(3):229–37. https://doi.org/10.1038/ng1254.

Article  CAS  Google Scholar 

Rivas FV, Tolia NH, Song JJ, Aragon JP, Liu J, Hannon GJ, et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol. 2005;12(4):340–9. https://doi.org/10.1038/nsmb918.

Article  CAS 

留言 (0)

沒有登入
gif