Empowering gene delivery with protein engineering platforms

Ryu DDY, Nam D-H. Recent Progress in Biomolecular Engineering. Biotechnol Prog. 2000;16:2–16.

Article  CAS  Google Scholar 

Mahdavi SZB, Oroojalian F, Eyvazi S, Hejazi M, Baradaran B, Pouladi N, et al. An overview on display systems (phage, bacterial, and yeast display) for production of anticancer antibodies; advantages and disadvantages. Int J Biol Macromol. 2022;208:421–42.

Article  CAS  Google Scholar 

Smith GP. Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science. 1985;228:1315–7.

Article  CAS  Google Scholar 

Lee CV, Sidhu SS, Fuh G. Bivalent antibody phage display mimics natural immunoglobulin. J Immunol Methods. 2004;284:119–32.

Article  CAS  Google Scholar 

Ledsgaard L, Kilstrup M, Karatt-Vellatt A, McCafferty J, Laustsen AH. Basics of antibody phage display technology. Toxins 2018;10. https://doi.org/10.3390/toxins10060236.

Alfaleh MA, Alsaab HO, Mahmoud AB, Alkayyal AA, Jones ML, Mahler SM, et al. Phage Display Derived Monoclonal Antibodies: From Bench to Bedside. Front Immunol. 2020;11:1986.

Article  CAS  Google Scholar 

Chasteen L, Ayriss J, Pavlik P, Bradbury ARM. Eliminating helper phage from phage display. Nucleic Acids Res. 2006;34:e145.

Article  CAS  Google Scholar 

Hess GT, Cragnolini JJ, Popp MW, Allen MA, Dougan SK, Spooner E, et al. An M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins. Bioconjug Chem. 2012;23:1478–87.

Article  CAS  Google Scholar 

Cherf GM, Cochran JR. Applications of yeast surface display for protein engineering. Methods Mol Biol (Clifton, NJ). 2015;1319:155.

Article  Google Scholar 

Boder ET, Wittrup KD. Yeast surface display for screening combinatorial polypeptide libraries. Nat Biotechnol. 1997;15:553–7.

Article  CAS  Google Scholar 

Boder ET, Wittrup KD. Yeast surface display for directed evolution of protein expression, affinity, and stability. Methods Enzymol. 2000;328:430–44.

Article  CAS  Google Scholar 

Chao G, Lau WL, Hackel BJ, Sazinsky SL, Lippow SM, Wittrup KD. Isolating and engineering human antibodies using yeast surface display. Nat Protoc. 2006;1:755–68.

Article  CAS  Google Scholar 

Valldorf B, Hinz SC, Russo G, Pekar L, Mohr L, Klemm J et al. Antibody display technologies: Selecting the cream of the crop. Biol Chem. 2021. https://doi.org/10.1515/HSZ-2020-0377/ASSET/GRAPHIC/J_HSZ-2020-0377_FIG_005.JPG.

Tsuruta LR, dos ML, Moro AM. Display Technologies for the Selection of Monoclonal Antibodies for Clinical Use. Antibody Eng. 2017. https://doi.org/10.5772/INTECHOPEN.70930.

Zhou C, Jacobsen FW, Cai L, Chen Q, Shen WD. Development of a novel mammalian cell surface antibody display platform. mAbs. 2010;2:508.

Article  Google Scholar 

Bowers PM, Horlick RA, Kehry MR, Neben TY, Tomlinson GL, Altobell L, et al. Mammalian cell display for the discovery and optimization of antibody therapeutics. Methods. 2014;65:44–56.

Article  CAS  Google Scholar 

Parthiban K, Perera RL, Sattar M, Huang Y, Mayle S, Masters E, et al. A comprehensive search of functional sequence space using large mammalian display libraries created by gene editing. mAbs. 2019;11:884–98.

Article  CAS  Google Scholar 

Kanamori T, Fujino Y, Ueda T. PURE ribosome display and its application in antibody technology. Biochim et Biophys Acta - Proteins Proteom. 2014;1844:1925–32.

Article  CAS  Google Scholar 

He M. Ribosome display: Cell-free protein display technology. Briefings Funct Genom Proteom. 2002;1:204–12.

Article  CAS  Google Scholar 

Kunamneni A, Ogaugwu C, Bradfute S, Durvasula R. Ribosome Display Technology: Applications in Disease Diagnosis and Control. Antibodies. 2020;9:28.

Article  CAS  Google Scholar 

Sockolosky JT, Trotta E, Parisi G, Picton L, Su LL, Le AC, et al. Selective targeting of engineered T cells using orthogonal IL-2 cytokine-receptor complexes. Science. 2018;359:1037–42.

Article  CAS  Google Scholar 

Sedic M, Senn JJ, Lynn A, Laska M, Smith M, Platz SJ, et al. Safety Evaluation of Lipid Nanoparticle–Formulated Modified mRNA in the Sprague-Dawley Rat and Cynomolgus Monkey. Vet Pathol. 2018;55:341–54.

Article  CAS  Google Scholar 

Haque AA, Dewerth A, Antony JS, Riethmüller J, Latifi N, Yasar H, et al. Modified hCFTR mRNA restores normal lung function in a mouse model of cystic fibrosis. 2017:202853. https://doi.org/10.1101/202853.

Lou B, De Koker S, Lau CYJ, Hennink WE, Mastrobattista E. mRNA Polyplexes with Post-Conjugated GALA Peptides Efficiently Target, Transfect, and Activate Antigen Presenting Cells. Bioconjugate Chem. 2019;30:461–75.

Article  CAS  Google Scholar 

Kowalski PS, Rudra A, Miao L, Anderson DG. Delivering the Messenger: Advances in Technologies for Therapeutic mRNA Delivery. Mol Ther. 2019;27:710–28.

Article  CAS  Google Scholar 

Nault J-C, Datta S, Imbeaud S, Franconi A, Mallet M, Couchy G, et al. Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet. 2015;47:1187–93.

Article  CAS  Google Scholar 

Saunders KO, Wang L, Joyce MG, Yang Z-Y, Balazs AB, Cheng C, et al. Broadly Neutralizing Human Immunodeficiency Virus Type 1 Antibody Gene Transfer Protects Nonhuman Primates from Mucosal Simian-Human Immunodeficiency Virus Infection. J Virol. 2015;89:8334–45.

Article  CAS  Google Scholar 

Sahay G, Querbes W, Alabi C, Eltoukhy A, Sarkar S, Zurenko C, et al. Efficiency of siRNA delivery by lipid nanoparticles is limited by endocytic recycling. Nat Biotechnol. 2013;31:653–8.

Article  CAS  Google Scholar 

Pardi N, Secreto AJ, Shan X, Debonera F, Glover J, Yi Y, et al. Administration of nucleoside-modified mRNA encoding broadly neutralizing antibody protects humanized mice from HIV-1 challenge. Nat Commun. 2017;8:14630.

Article  Google Scholar 

Stadler CR, Bähr-Mahmud H, Celik L, Hebich B, Roth AS, Roth RP, et al. Elimination of large tumors in mice by mRNA-encoded bispecific antibodies. Nat Med. 2017;23:815–7.

Article  CAS  Google Scholar 

Yin H, Kanasty RL, Eltoukhy AA, Vegas AJ, Dorkin JR, Anderson DG. Non-viral vectors for gene-based therapy. Nat Rev Genet. 2014;15:541–55.

Article  CAS  Google Scholar 

Mukalel AJ, Riley RS, Zhang R, Mitchell MJ. Nanoparticles for nucleic acid delivery: Applications in cancer immunotherapy. Cancer Lett. 2019;458:102–12.

Article  CAS  Google Scholar 

Malek TR, Yu A, Zhu L, Matsutani T, Adeegbe D, Bayer AL. IL-2 Family of Cytokines in T Regulatory Cell Development and Homeostasis. J Clin Immunol. 2008;28:635–9.

Article  CAS  Google Scholar 

Létourneau S, Krieg C, Pantaleo G, Boyman O. IL-2– and CD25-dependent immunoregulatory mechanisms in the homeostasis of T-cell subsets. J Allergy Clin Immunol. 2009;123:758–62.

Article  Google Scholar 

Zhang Q, Hresko ME, Picton LK, Su L, Hollander MJ, Nunez-Cruz S, et al. A human orthogonal IL-2 and IL-2Rβ system enhances CAR T cell expansion and antitumor activity in a murine model of leukemia. Sci Transl Med. 2021;13:eabg6986.

Article  CAS  Google Scholar 

Hirai T, Ramos TL, Lin P-Y, Simonetta F, Su LL, Picton LK et al. Selective expansion of regulatory T cells using an orthogonal IL-2/IL-2 receptor system facilitates transplantation tolerance. 2021. https://doi.org/10.1172/JCI139991.

Papadopoulos N, Martin J, Ruan Q, Rafique A, Rosconi MP, Shi E, et al. Binding and neutralization of vascular endothelial growth factor (VEGF) and related ligands by VEGF Trap, ranibizumab and bevacizumab. Angiogenesis. 2012;15:171–85.

Article  CAS  Google Scholar 

Kureshi R, Zhu A, Shen J, Tzeng SY, Astrab LR, Sargunas PR, et al. Structure-Guided Molecular Engineering of a Vascular Endothelial Growth Factor Antagonist to Treat Retinal Diseases. Cel Mol Bioeng. 2020;13:405–18.

Article  CAS  Google Scholar 

June CH, O’Connor RS, Kawalekar OU, Ghassemi S, Milone MC. CAR T cell immunotherapy for human cancer. Science. 2018;359:1361–5.

Article  CAS  Google Scholar 

Zajc CU, Salzer B, Taft JM, Reddy ST, Lehner M, Traxlmayr MW. Driving CARs with alternative navigation tools – the potential of engineered binding scaffolds. FEBS J. 2021;288:2103–18.

Article  CAS  Google Scholar 

Subklewe M, von Bergwelt-Baildon M, Humpe A. Chimeric Antigen Receptor T Cells: A Race to Revolutionize Cancer Therapy. Transfus Med Hemother. 2019;46:15–24.

Article  Google Scholar 

Goodman DB, Azimi CS, Kearns K, Garakani K, Garcia J, Patel N et al. Pooled screening of CAR T cells identifies non-native signaling domains for next-generation immunotherapies. Immunology. 2021 https://doi.org/10.1101/2021.07.11.451980.

Lanitis E, Rota G, Kosti P, Ronet C, Spill A, Seijo B, et al. Optimized gene engineering of murine CAR-T cells reveals the beneficial effects of IL-15 coexpression. J Exp Med. 2021;218:e20192203.

Article  CAS  Google Scholar 

Zimmermann K, Kuehle J, Dragon AC, Galla M, Kloth C, Rudek LS, et al. Design and Characterization of an “All-in-One” Lentiviral Vector System Combining Constitutive Anti-GD2 CAR Expression and Inducible Cytokines. Cancers. 2020;12:375.

Article  CAS  Google Scholar 

Chmielewski M, Abken H. CAR T Cells Releasing IL-18 Convert to T-Bethigh FoxO1low Effectors that Exhibit Augmented Activity against Advanced Solid Tumors. Cell Rep. 2017;21:3205–19.

Article  CAS  Google Scholar 

Hu B, Ren J, Luo Y, Keith B, Young RM, Scholler J, et al. Augmentation of Antitumor Immunity by Human and Mouse CAR T Cells Secreting IL-18. Cell Rep. 2017;20:3025–33.

Article  CAS  Google Scholar 

Krenciute G, Prinzing BL, Yi Z, Wu M-F, Liu H, Dotti G, et al. Transgenic Expression of IL15 Improves Antiglioma Activity of IL13Rα2-CAR T Cells but Results in Antigen Loss Variants. Cancer Immunol Res. 2017;5:571–81.

Article  CAS  Google Scholar 

Ataca Atilla P, McKenna MK, Tashiro H, Srinivasan M, Mo F, Watanabe N, et al. Modulating TNFα activity allows transgenic IL15-Expressing CLL-1 CAR T cells to safely eliminate acute myeloid leukemia. J Immunother Cancer. 2020;8:e001229.

Article  Google Scholar 

留言 (0)

沒有登入
gif