Insights into the defensive mechanism of bioleaching microorganisms under extreme environmental copper stress

Abe K, Nomura N, Suzuki S (2020) Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol 96(5):031. https://doi.org/10.1093/femsec/fiaa031

Article  CAS  Google Scholar 

Affandi T, McEvoy MM (2019) Mechanism of metal ion-induced activation of a two-component sensor kinase. Biochem J 476:115–135. https://doi.org/10.1042/bcj20180577

Article  CAS  Google Scholar 

Alav I, Kobylka J, Kuth MS, Pos KM, Picard M, Blair JMA, Bavro VN (2021) Structure, assembly, and function of tripartite efflux and type 1 secretion systems in gram-negative bacteria. Chem Rev 121(9):5479–5596. https://doi.org/10.1021/acs.chemrev.1c00055

Article  CAS  Google Scholar 

Almarcegui RJ, Navarro CA, Paradela A, Albar JP, von Bernath D, Jerez CA (2014a) New copper resistance determinants in the extremophile acidithiobacillus ferrooxidans: a quantitative proteomic analysis. J Proteome Res 13(2):946–960. https://doi.org/10.1021/pr4009833

Article  CAS  Google Scholar 

Almarcegui RJ, Navarro CA, Paradela A, Albar JP, von Bernath D, Jerez CA (2014b) Response to copper of Acidithiobacillus ferrooxidans ATCC 23270 grown in elemental sulfur. Res Microbiol 165(9):761–772. https://doi.org/10.1016/j.resmic.2014.07.005

Article  CAS  Google Scholar 

Andrei A, Ozturk Y, Khalfaoui-Hassani B, Rauch J, Marckmann D, Trasnea PI, Daldal F, Koch HG (2020) Cu homeostasis in bacteria: the ins and outs. Membranes (Basel) 10(9):242. https://doi.org/10.3390/membranes10090242

Article  CAS  Google Scholar 

Baker-Austin C, Dopson M, Wexler M, Sawers RG, Bond PL (2005) Molecular insight into extreme copper resistance in the extremophilic archaeon “Ferroplasma acidarmanus” Fer1. Microbiology 151:2637–2646. https://doi.org/10.1099/mic.0.28076-0

Article  CAS  Google Scholar 

Baksh KA, Zamble DB (2020) Allosteric control of metal-responsive transcriptional regulators in bacteria. J Biol Chem 295(6):1673–1684. https://doi.org/10.1074/jbc.REV119.011444

Article  CAS  Google Scholar 

Banerjee P, Jain D (2019) Sensor I regulated ATPase activity of FleQ is essential for motility to biofilm transition in Pseudomonas aeruginosa. ACS Chem Biol 14(7):1515–1527. https://doi.org/10.1021/acschembio.9b00255

Article  CAS  Google Scholar 

Banerjee P, Sahoo PK, AdhikaryRuhalJain ARD (2021) Molecular and structural facets of c-di-GMP signalling associated with biofilm formation in Pseudomonas aeruginosa. Mol Asp Med. https://doi.org/10.1016/j.mam.2021.101001

Article  Google Scholar 

Barahona S, Castro-Severyn J, Dorador C, Saavedra C, Remonsellez F (2020) Determinants of copper resistance in acidithiobacillus ferrivorans ACH Isolated from the Chilean altiplano. Genes 11(8):844

Article  CAS  Google Scholar 

Baraquet C, Murakami K, Parsek MR, Harwood CS (2012) The FleQ protein from Pseudomonas aeruginosa functions as both a repressor and an activator to control gene expression from the pel operon promoter in response to c-di-GMP. Nucleic Acids Res 40(15):7207–7218. https://doi.org/10.1093/nar/gks384

Article  CAS  Google Scholar 

Benach J, Swaminathan SS, Tamayo R, Handelman SK, Folta-Stogniew E, Ramos JE, Forouhar F, Neely H, Seetharaman J, Camilli A, Hunt JF (2007) The structural basis of cyclic diguanylate signal transduction by PilZ domains. EMBO J 26(24):5153–5166. https://doi.org/10.1038/sj.emboj.7601918

Article  CAS  Google Scholar 

Bhamidimarri SP, Young TR, Shanmugam M, Soderholm S, Baslé A, Bumann D, van den Berg B (2021) Acquisition of ionic copper by a bacterial outer membrane protein. bioRxiv. https://doi.org/10.1101/2020.06.04.134395

Article  Google Scholar 

Boehm A, Kaiser M, Li H, Spangler C, Kasper CA, Ackermann M, Kaever V, Sourjik V, Roth V, Jenal U (2010) Second messenger-mediated adjustment of bacterial swimming velocity. Cell 141(1):107–116. https://doi.org/10.1016/j.cell.2010.01.018

Article  CAS  Google Scholar 

Cárdenas JP, Moya F, Covarrubias P, Shmaryahu A, Levicán G, Holmes DS, Quatrini R (2012) Comparative genomics of the oxidative stress response in bioleaching microorganisms. Hydrometallurgy 127–128:162–167. https://doi.org/10.1016/j.hydromet.2012.07.014

Article  CAS  Google Scholar 

Cardenas JP, Lazcano M, Ossandon FJ, Corbett M, Holmes DS, Watkin E (2014) Draft genome sequence of the iron-oxidizing acidophile Leptospirillum ferriphilum type strain DSM 14647. Genome Announc 2(6):e01153. https://doi.org/10.1128/genomeA.01153-14

Article  Google Scholar 

Casino P, Rubio V, Marina A (2009) Structural insight into partner specificity and phosphoryl transfer in two-component signal transduction. Cell 139(2):325–336. https://doi.org/10.1016/j.cell.2009.08.032

Article  CAS  Google Scholar 

Castelle C, Guiral M, Malarte G, Ledgham F, Leroy G, Brugna M, Giudici-Orticoni MT (2008) A new iron-oxidizing/O-2-reducing supercomplex spanning both inner and outer membranes, isolated from the extreme acidophile Acidithiobacillus ferrooxidans. J Biol Chem 283(38):25803–25811. https://doi.org/10.1074/jbc.M802496200

Article  CAS  Google Scholar 

Chacon KN, Mealman TD, McEvoy MM, Blackburn NJ (2014) Tracking metal ions through a Cu/Ag efflux pump assigns the functional roles of the periplasmic proteins. Proc Natl Acad Sci USA 111(43):15373–15378. https://doi.org/10.1073/pnas.1411475111

Article  CAS  Google Scholar 

Chakravorty DK, Li P, Tran TT, Bayse CA, Merz KM Jr (2016) Metal ion capture mechanism of a copper metallochaperone. Biochemistry 55(3):501–509. https://doi.org/10.1021/acs.biochem.5b01217

Article  CAS  Google Scholar 

Chandramohan A, Duprat E, Remusat L, Zirah S, Lombard C, Kish A (2018) Novel mechanism for surface layer shedding and regenerating in bacteria exposed to metal-contaminated conditions. Front Microbiol 9:3210. https://doi.org/10.3389/fmicb.2018.03210

Article  Google Scholar 

Chen LX, Ren YL, Lin JQ, Liu XM, Pang X, Lin JQ (2012) Acidithiobacillus caldus sulfur oxidation model based on transcriptome analysis between the wild type and sulfur oxygenase reductase defective mutant. PLoS One 7(9):e39470. https://doi.org/10.1371/journal.pone.0039470

Article  CAS  Google Scholar 

Chen XK, Li XY, Ha YF, Lin JQ, Liu XM, Pang X, Lin JQ, Chen LX (2020) Ferric uptake regulator provides a new strategy for acidophile adaptation to acidic ecosystems. Appl Environ Microbiol. https://doi.org/10.1128/aem.00268-20

Article  Google Scholar 

Chen YY, Yin JJ, Wei J, Zhang XZ (2020) FurA-dependent microcystin synthesis under copper stress in Microcystis aeruginosa. Microorganisms 8(6):832. https://doi.org/10.3390/microorganisms8060832

Article  CAS  Google Scholar 

Christel S, Herold M, Bellenberg S, El Hajjami M, Buetti-Dinh A, Pivkin IV, Sand W, Wilmes P, Poetsch A, Dopson M (2018) Multi-omics reveals the lifestyle of the Acidophilic, mineral-oxidizing model species Leptospirillum ferriphilum(T). Appl Environ Microbiol. https://doi.org/10.1128/AEM.02091-17

Article  Google Scholar 

Christen M, Christen B, Allan MG, Folcher M, Jeno P, Grzesiek S, Jenal U (2007) DgrA is a member of a new family of cyclic diguanosine monophosphate receptors and controls flagellar motor function in Caulobacter crescentus. Proc Natl Acad Sci USA 104(10):4112–4117. https://doi.org/10.1073/pnas.0607738104

Article  CAS  Google Scholar 

Colin R, Ni B, Laganenka L, Sourjik V (2021) Multiple functions of flagellar motility and chemotaxis in bacterial physiology. FEMS Microbiol Rev. https://doi.org/10.1093/femsre/fuab038

Article  Google Scholar 

Das S (2022) Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria. Carbohyd Polym. https://doi.org/10.1016/j.carbpol.2022.119536

Article  Google Scholar 

Das A, Modak JM, Natarajan KA (1998) Surface chemical studies of Thiobacillus ferrooxidans with reference to copper tolerance. Antonie Van Leeuwenhoek Int J Gen Mol Microbiol 73(3):215–222. https://doi.org/10.1023/a:1000858525755

Article  CAS  Google Scholar 

Denoncourt A, Downey M (2021) Model systems for studying polyphosphate biology: a focus on microorganisms. Curr Genet 67(3):331–346. https://doi.org/10.1007/s00294-020-01148-x

Article  CAS  Google Scholar 

Diaz M, Castro M, Copaja S, Guiliani N (2018) Biofilm formation by the acidophile bacterium acidithiobacillus thiooxidans involves c-di-GMP pathway and Pel exopolysaccharide. Genes (Basel). https://doi.org/10.3390/genes9020113

Article  Google Scholar 

Diaz M, San Martin D, Castro M, Vera M, Guiliani N (2021) Quorum sensing signaling molecules positively regulate c-di-GMP effector PelD encoding gene and PEL exopolysaccharide biosynthesis in extremophile bacterium acidithiobacillus thiooxidans. Genes 12(1):69. https://doi.org/10.3390/genes12010069

Article  CAS  Google Scholar 

Dopson M, Baker-Austin C, Koppineedi PR, Bond PL (2003) Growth in sulfidic mineral environments: metal resistance mechanisms in acidophilic micro-organisms. Microbiology 149:1959–1970. https://doi.org/10.1099/mic.0.26296-0

Article  CAS  Google Scholar 

Dunbar WS (2017) Biotechnology and the mine of tomorrow. Trends Biotechnol 35(1):79–89. https://doi.org/10.1016/j.tibtech.2016.07.004

Article  CAS  Google Scholar 

Dwarakanath S, Chaplin AK, Hough MA, Rigali S, Vijgenboom E, Worrall JAR (2012) Response to copper stress in Streptomyces lividans extends beyond genes under direct control of a copper-sensitive operon repressor protein (CsoR). J Biol Chem 287(21):17833–17847. https://doi.org/10.1074/jbc.M112.352740

Article  CAS  Google Scholar 

Esparza M, Jedlicki E, Gonzalez C, Dopson M, Holmes DS (2019) Effect of CO2 concentration on uptake and assimilation of inorganic carbon in the extreme acidophile Acidithiobacillus ferrooxidans. Front Microbiol 10:603. https://doi.org/10.3389/fmicb.2019.00603

Article  Google Scholar 

Farias R, Norambuena J, Ferrer A, Camejo P, Zapata C, Chavez R, Orellana O, Levican G (2021) Redox stress response and UV tolerance in the acidophilic iron-oxidizing bacteria Leptospirillum ferriphilum and Acidithiobacillus ferrooxidans. Res Microbiol 172(3):103833. https://doi.org/10.1016/j.resmic.2021.103833

Article  CAS  Google Scholar 

Feng S, Yang H, Wang W (2015) Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching. Bioresour Technol 191:37–44. https://doi.org/10.1016/j.biortech.2015.04.122

Article  CAS  Google Scholar 

Feng S, Li K, Huang Z, Tong Y, Yang H (2019) Specific mechanism of Acidithiobacillus caldus extracellular polymeric substances in the bioleaching of copper-bearing sulfide ore. PLoS One 14(4):e0213945. https://doi.org/10.1371/journal.pone.0213945

Article  CAS  Google Scholar 

Feng S, Hou S, Cui Y, Tong Y, Yang H (2020) Metabolic transcriptional analysis on copper tolerance in moderate thermophilic bioleaching microorganism Acidithiobacillus caldus. J Ind Microbiol Biotechnol 47(1):21–33. https://doi.org/10.1007/s10295-019-02247-6

Article  CAS 

留言 (0)

沒有登入
gif