Oxidative Stress-Mediated Programmed Cell Death: a Potential Therapy Target for Atherosclerosis

Libby P. The changing landscape of atherosclerosis. Nature. 2021;592(7855):524–33.

Article  CAS  Google Scholar 

Tabares-Guevara JH, Villa-Pulgarin JA, Hernandez JC. Atherosclerosis: immunopathogenesis and strategies for immunotherapy. Immunotherapy. 2021;13(14):1231–44.

Article  CAS  Google Scholar 

Vallejo J, et al. Heterogeneity of immune cells in human atherosclerosis revealed by scRNA-Seq. Cardiovasc Res. 2021;117(13):2537–43.

CAS  Google Scholar 

Gupta M, et al. Novel emerging therapies in atherosclerosis targeting lipid metabolism. Expert Opin Investig Drugs. 2020;29(6):611–22.

Article  CAS  Google Scholar 

Poznyak AV, et al. Anti-inflammatory therapy for atherosclerosis: focusing on cytokines. Int J Mol Sci. 2021;22(13):7061.

Article  CAS  Google Scholar 

Li M, et al. Programmed cell death in atherosclerosis and vascular calcification. Cell Death Dis. 2022;13(5):467.

Article  Google Scholar 

He X, et al. Pyroptosis is a critical immune-inflammatory response involved in atherosclerosis. Pharmacol Res. 2021;165:105447.

Article  CAS  Google Scholar 

Shan R, et al. Apoptosis, autophagy and atherosclerosis: relationships and the role of Hsp27. Pharmacol Res. 2021;166:105169.

Article  CAS  Google Scholar 

Chen X, et al. Ferroptosis and cardiovascular disease: role of free radical-induced lipid peroxidation. Free Radic Res. 2021;55(4):405–15.

Article  CAS  Google Scholar 

Zhao Y, et al. ROS-mediated programmed cell death (PCD) of Thalassiosira pseudonana under the stress of BDE-47. Environ Pollut. 2020;262:114342.

Article  CAS  Google Scholar 

Wang L, et al. Oxidative stress in oocyte aging and female reproduction. J Cell Physiol. 2021;236(12):7966–83.

Article  CAS  Google Scholar 

Castellini C, et al. Pathophysiology of mitochondrial dysfunction in human spermatozoa: focus on energetic metabolism, oxidative stress and apoptosis. Antioxidants (Basel). 2021;10(5):695.

Article  CAS  Google Scholar 

Boz Z, et al. N-acetylcysteine prevents olanzapine-induced oxidative stress in mHypoA-59 hypothalamic neurons. Sci Rep. 2020;10(1):19185.

Article  CAS  Google Scholar 

Sun H, et al. Harnessing C/N balance of Chromochloris zofingiensis to overcome the potential conflict in microalgal production. Commun Biol. 2020;3(1):186.

Article  CAS  Google Scholar 

Prasad AS, Bao B. Molecular mechanisms of zinc as a pro-antioxidant mediator: clinical therapeutic implications. Antioxidants (Basel). 2019;8(6):164.

Article  CAS  Google Scholar 

Blanter M, Gouwy M, Struyf S. Studying neutrophil function in vitro: cell models and environmental factors. J Inflamm Res. 2021;14:141–62.

Article  Google Scholar 

Sharma A, et al. Modulation of Nrf2 by quercetin in doxorubicin-treated rats. Heliyon. 2020;6(4):e03803.

Article  Google Scholar 

Lee DY, Song MY, and Kim EH. Role of oxidative stress and Nrf2/KEAP1 signaling in colorectal cancer: mechanisms and therapeutic perspectives with phytochemicals. Antioxidants (Basel). 2021;10(5):743.

Franco R, Navarro G, and Martínez-Pinilla E. Antioxidant defense mechanisms in erythrocytes and in the central nervous system. Antioxidants (Basel). 2019;8(2):46.

Li H, et al. Nrf2 deficiency attenuates atherosclerosis by reducing LOX-1-mediated proliferation and migration of vascular smooth muscle cells. Atherosclerosis. 2022;347:1–16.

Article  CAS  Google Scholar 

Ying Z, et al. Lipoicmethylenedioxyphenol reduces experimental atherosclerosis through activation of Nrf2 signaling. PLoS ONE. 2016;11(2):e0148305.

Article  Google Scholar 

Chen Y, et al. A small molecule NRF2 activator BC-1901S ameliorates inflammation through DCAF1/NRF2 axis. Redox Biol. 2020;32:101485.

Article  CAS  Google Scholar 

Qiao Q, et al. Roles of dietary bioactive peptides in redox balance and metabolic disorders. Oxid Med Cell Longev. 2021;2021:5582245.

Article  Google Scholar 

Li D, et al. The role of Nrf2 in hearing loss. Front Pharmacol. 2021;12:620921.

Article  CAS  Google Scholar 

Ghanim BY, Qinna NA. Nrf2/ARE axis signalling in hepatocyte cellular death. Mol Biol Rep. 2022;49:4039–53.

Article  CAS  Google Scholar 

Yu X, Li Y, Mu X. Effect of quercetin on PC12 Alzheimer’s disease cell model induced by Aβ (25–35) and its mechanism based on sirtuin1/Nrf2/HO-1 pathway. Biomed Res Int. 2020;2020:8210578.

Article  Google Scholar 

Zhang Q, et al. Activation of Nrf2/HO-1 signaling: an important molecular mechanism of herbal medicine in the treatment of atherosclerosis via the protection of vascular endothelial cells from oxidative stress. J Adv Res. 2021;34:43–63.

Article  CAS  Google Scholar 

Wang Y, et al. Circular RNAs: novel players in the oxidative stress-mediated pathologies, biomarkers, and therapeutic targets. Oxid Med Cell Longev. 2021;2021:6634601.

Google Scholar 

Song L, et al. Chinese herbal medicines and active metabolites: potential antioxidant treatments for atherosclerosis. Front Pharmacol. 2021;12:675999.

Article  CAS  Google Scholar 

Buchmann GK, et al. Deletion of NoxO1 limits atherosclerosis development in female mice. Redox Biol. 2020;37:101713.

Article  CAS  Google Scholar 

Trum M, Riechel J, and Wagner S. Cardioprotection by SGLT2 inhibitors-does it all come down to Na(+)? Int J Mol Sci. 2021;22(15):7976.

Trum M, et al. Inhibition of cardiac potassium currents by oxidation-activated protein kinase A contributes to early afterdepolarizations in the heart. Am J Physiol Heart Circ Physiol. 2020;319(6):H1347-h1357.

Article  CAS  Google Scholar 

Matilla AJ. Cellular oxidative stress in programmed cell death: focusing on chloroplastic (1)O(2) and mitochondrial cytochrome-c release. J Plant Res. 2021;134(2):179–94.

Article  CAS  Google Scholar 

Obeng E. Apoptosis (programmed cell death) and its signals - a review. Braz J Biol. 2021;81(4):1133–43.

Article  CAS  Google Scholar 

Goldblatt ZE, Cirka HA, Billiar KL. Mechanical regulation of apoptosis in the cardiovascular system. Ann Biomed Eng. 2021;49(1):75–97.

Article  Google Scholar 

Dou Z, et al. Aberrant Bcl-x splicing in cancer: from molecular mechanism to therapeutic modulation. J Exp Clin Cancer Res. 2021;40(1):194.

Article  CAS  Google Scholar 

Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol. 2020;17(7):395–417.

Article  Google Scholar 

Cheng Q, et al. Long non-coding RNA LOC285194 regulates vascular smooth muscle cell apoptosis in atherosclerosis. Bioengineered. 2020;11(1):53–60.

Article  CAS  Google Scholar 

Li Q, et al. HRD1 prevents atherosclerosis-mediated endothelial cell apoptosis by promoting LOX-1 degradation. Cell Cycle. 2020;19(12):1466–77.

Article  CAS  Google Scholar 

Zhang N, et al. The regulation of Ero1-alpha in homocysteine-induced macrophage apoptosis and vulnerable plaque formation in atherosclerosis. Atherosclerosis. 2021;334:39–47.

Article  CAS  Google Scholar 

Tawakol A, Abohashem S, Zureigat H. Imaging apoptosis in atherosclerosis: from cell death, a ray of light. J Am Coll Cardiol. 2020;76(16):1875–7.

Article  Google Scholar 

Liu C, et al. The function, regulation and mechanism of programmed cell death of macrophages in atherosclerosis. Front Cell Dev Biol. 2021;9:809516.

Article  Google Scholar 

Lin X, et al. Focus on ferroptosis, pyroptosis, apoptosis and autophagy of vascular endothelial cells to the strategic targets for the treatment of atherosclerosis. Arch Biochem Biophys. 2022;715:109098.

Article  CAS  Google Scholar 

Fang S, et al. IRGM/Irgm1 facilitates macrophage apoptosis through ROS generation and MAPK signal transduction: Irgm1(+/-) mice display increases atherosclerotic plaque stability. Theranostics. 2021;11(19):9358–75.

Article  CAS  Google Scholar 

Guo Y, et al. PCSK9 (proprotein convertase subtilisin/Kexin type 9) Triggers vascular smooth muscle cell senescence and apoptosis: implication of its direct role in degenerative vascular disease. Arterioscler Thromb Vasc Biol. 2022;42(1):67–86.

Article  CAS  Google Scholar 

van der Meer IM, et al. Soluble Fas, a mediator of apoptosis, C-reactive protein, and coronary and extracoronary atherosclerosis. The Rotterdam Coronary Calcification Study. Atherosclerosis. 2006;189(2):464–9.

Article  Google Scholar 

Zadelaar AS, et al. Increased vulnerability of pre-existing atherosclerosis in ApoE-deficient mice following adenovirus-mediated Fas ligand gene transfer. Atherosclerosis. 2005;183(2):244–50.

Article  CAS  Google Scholar 

Patel M, et al. Considerations for analysis of endothelial shear stress and strain in FSI models of atherosclerosis. J Biomech. 2021;128:110720.

Article  Google Scholar 

Schneider DB, et al. Expression of Fas ligand in arteries of hypercholesterolemic rabbits accelerates atherosclerotic lesion formation. Arterioscler Thromb Vasc Biol. 2000;20(2):298–308.

Article  CAS  Google Scholar 

Pi S, et al. The P2RY12 receptor promotes VSMC-derived foam cell formation by inhibiting autophagy in advanced atherosclerosis. Autophagy. 2021;17(4):980–1000.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif