Efficient generation of epigenetic disease model mice by epigenome editing using the piggyBac transposon system

Bird AP. CpG island as gene markers in the vertebrate nucleus. Trends Genet. 1987;3:342–7.

Article  CAS  Google Scholar 

Gardiner-Garden M, Frommer M. CpG islands in vertebrate genomes. J Mol Biol. 1987;196:261–82.

Article  CAS  Google Scholar 

Jones P, Gonzalgo M. Altered DNA methylation and genome instability: a new pathway to cancer? Proc Natl Acad Sci U S A. 1997;94:2103–5.

Article  CAS  Google Scholar 

Feinberg AP. Phenotypic plasticity and the epigenetics of human disease. Nature. 2007;447:433–40.

Article  CAS  Google Scholar 

Sen P, Shah PP, Nativio R, Berger SL. Epigenetic mechanisms of longevity and aging. Cell. 2016;166:822–39.

Article  CAS  Google Scholar 

Ciernia VA, LaSalle J. The landscape of DNA methylation amid a perfect storm of autism aetiologies. Nat Rev Neurosci. 2016;17:411–23.

Article  CAS  Google Scholar 

Pal S, Tyler JK. Epigenetics and aging Sci Adv. 2016;2: e1600584.

Google Scholar 

Tiffon C. The impact of nutrition and environmental epigenetics on human health and disease. Int J Mol Sci. 2018;19:E3425.

Article  Google Scholar 

Monk D. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat Rev Genet. 2019;20:235–48.

Article  CAS  Google Scholar 

Rakyan VK, Down TA, Balding DJ, Beck S. Epigenome-wide association studies for common human diseases. Nat Rev Genet. 2011;12:529–41.

Article  CAS  Google Scholar 

Yan H. Genome-wide epigenetic studies in human disease: a primer on -omic technologies. Am J Epidemiol. 2016;183:96–109.

Google Scholar 

Birney E, Smith GD, Greally JM. Epigenome-wide association studies and the interpretation of disease-omics. PLoS Genet. 2016;12: e1006105.

Article  Google Scholar 

Cui C, Gan Y, Gu L, Wilson J, Liu Z, Zhang B, et al. P16-specific DNA methylation by engineered zinc finger methyltransferase inactivates gene transcription and promotes cancer metastasis. Genome Biol. 2015;16:252.

Article  Google Scholar 

Bernstein DL, Le Lay JE, Ruano EG, Kaestner KH. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J Clin Invest. 2015;125:1998–2006.

Article  Google Scholar 

Maeder ML, Angstman JF, Richardson ME, Linder SJ, Cascio VM, Tsai SQ, et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol. 2013;31:1137–42.

Article  CAS  Google Scholar 

McDonald JI, Celik H, Rois LE, Fishberger G, Fowler T, Rees R, et al. Reprogrammable CRISPR/Cas9-based system for inducing site-specific DNA methylation. Biol Open. 2016;5:866–74.

Article  CAS  Google Scholar 

Vojta A, Dobrinić P, Tadić V, Bočkor L, Korać P, Julg B, et al. Repurposing the CRISPR-Cas9 system for targeted DNA methylation. Nucleic Acids Res. 2016;44:5615–28.

Article  CAS  Google Scholar 

Liu XS, Wu H, Ji X, Stelzer Y, Wu X, Czauderna S, et al. Editing DNA methylation in the mammalian genome. Cell. 2016;167:233–47.

Article  CAS  Google Scholar 

Lei Y, Zhang X, Su J, Jeong M, Gundry MC, Huang YH, et al. Targeted DNA methylation in vivo using an engineered dCas9-MQ1 fusion protein. Nat Commun. 2017;8:16026.

Article  CAS  Google Scholar 

Yamazaki T, Hatano Y, Handa T, Kato S, Hoida K, Yamamura R, et al. Targeted DNA methylation in pericentromeres with genome editing-based artificial DNA methyltransferase. PLoS ONE. 2017;12: e0177764.

Article  Google Scholar 

Wei Y, Lang J, Zhang Q, Yang CR, Zhao ZA, Zhang Y, et al. DNA methylation analysis and editing in single mammalian oocytes. Proc Natl Acad Sci U S A. 2019;116:9883–92.

Article  CAS  Google Scholar 

Horii T, Morita S, Hino S, Kimura M, Hino Y, Kogo H, et al. Successful generation of epigenetic disease model mice by targeted demethylation of the epigenome. Genome Biol. 2020;21:77.

Article  CAS  Google Scholar 

Silver HK, Kiyasu W, George J, Deamer WC. Syndrome of congenital hemihypertrophy, shortness of stature, and elevated urinary gonadotropins. Pediatrics. 1953;12:368–76.

Article  CAS  Google Scholar 

Russell A. A syndrome of intra-uterine dwarfism recognizable at birth with cranio-facial dysostosis, disproportionately short arms, and other anomalies (5 examples). Proc R Soc Med. 1954;47:1040–4.

CAS  Google Scholar 

Price SM, Stanhope R, Garrett C, Preece MA, Trembath RC. The spectrum of Silver-Russell syndrome: a clinical and molecular genetic study and new diagnostic criteria. J Med Genet. 1999;36:837–42.

CAS  Google Scholar 

Bartholdi D, Krajewska-Walasek M, Ounap K, Gaspar H, Chrzanowska KH, Ilyana H, et al. Epigenetic mutations of the imprinted IGF2-H19 domain in Silver-Russell syndrome (SRS): results from a large cohort of patients with SRS and SRS-like phenotypes. J Med Genet. 2009;46:192–7.

Article  CAS  Google Scholar 

Lois C, Hong EJ, Pease S, Brown EJ, Baltimore D. Germline transmission and tissuespecific expression of transgenes delivered by lentiviral vectors. Science. 2002;295:868–72.

Article  CAS  Google Scholar 

Takeda J, Keng VW, Horie K. Germline mutagenesis mediated by Sleeping Beauty transposon system in mice. Genome Biol. 2007;8(Suppl 1):S14.

Article  Google Scholar 

Sumiyama K, Kawakami K, Yagita K. A simple and highly efficient transgenesis method in mice with the Tol2 transposon system and cytoplasmic microinjection. Genomics. 2010;95:306–11.

Article  CAS  Google Scholar 

Ding S, Wu X, Li G, Han M, Zhuang Y, Xu T. Efficient transposition of the piggyBac (PB) transposon in mammalian cells and mice. Cell. 2005;122:473–83.

Article  CAS  Google Scholar 

Wu SC, Meir YJ, Coates CJ, Handler AM, Pelczar P, Moisyadi S, Kaminski JM. piggyBac is a flexible and highly active transposon as compared to sleeping beauty, Tol2, and Mos1 in mammalian cells. Proc Natl Acad Sci USA. 2006;103:15008–13.

Article  CAS  Google Scholar 

Li MA, Turner DJ, Ning Z, Yusa K, Liang Q, Eckert S, Rad L, Fitzgerald TW, Craig NL, Bradley A. Mobilization of giant piggyBac transposons in the mouse genome. Nucleic Acids Res. 2011;39: e148.

Article  CAS  Google Scholar 

Suzuki S, Tsukiyama T, Kaneko T, Imai H, Minami N. A hyperactive piggyBac transposon system is an easy-to-implement method for introducing foreign genes into mouse preimplantation embryos. J Reprod Dev. 2015;61:241–4.

Article  Google Scholar 

Morita S, Noguchi H, Horii T, Nakabayashi K, Kimura M, Okamura K, et al. Targeted DNA demethylation in vivo using dCas9-peptide repeat and scFv-TET1 catalytic domain fusions. Nat Biotechnol. 2016;34:1060–5.

Article  CAS  Google Scholar 

Yusa K, Zhou L, Li MA, Bradley A, Craig NL. A hyperactive piggyBac transposase for mammalian applications. Proc Natl Acad Sci USA. 2011;108:1531–6.

Article  CAS  Google Scholar 

Arnaud P. Genomic imprinting in germ cells: imprints are under control. Reproduction. 2010;140:411–23.

Article  CAS  Google Scholar 

Tremblay KD, Duran KL, Bartolomei MSA. 5’2-kilobase pair region of the imprinted mouse H19 gene exhibits exclusive paternal methylation throughout development. Mol Cell Biol. 1997;17:4322–9.

Article  CAS  Google Scholar 

Gicquel C, Rossignol S, Cabrol S, Houang M, Steunou V, Barbu V, et al. Epimutation of the telomeric imprinting center region on chromosome 11p15 in Silver-Russell syndrome. Nat Genet. 2005;37:1003–7.

Article  CAS  Google Scholar 

Hark AT, Schoenherr CJ, Katz DJ, Ingram RS, Levorse JM, Tilghman SM. CTCF mediates methylation-sensitive enhancer-blocking activity at the H19/Igf2 locus. Nature. 2000;405:486–9.

Article  CAS  Google Scholar 

Clark AJ, Bissinger P, Bullock DW, Damak S, Wallace R, et al. Chromosomal position effects and the modulation of transgene expression. Reprod Fertil Dev. 1994;6:589–98.

Article  CAS  Google Scholar 

Dorer DR. Do transgene arrays form heterochromatin in vertebrates? Transgenic Res. 1997;6:3–10.

Article  CAS  Google Scholar 

Garrick D, Fierring S, Martin DIK, Whitelaw E. Repeat-induced gene silencing in mammals. Nature Genet. 1998;18:56–9.

Article  CAS  Google Scholar 

Li MA, Pettitt SJ, Eckert S, Ning Z, Rice S, Cadiñanos J, Yusa K, Conte N, Bradley A. The piggyBac transposon displays local and distant reintegration preferences and can cause mutations at noncanonical integration sites. Mol Cell Biol. 2013;33:1317–30.

Article  CAS  Google Scholar 

Ochman H, Gerber AS, Hartl DL. Genetic applications of an inverse polymerase chain reaction. Genetics. 1988;120:621–3.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif