New meroterpenoids from a soil-derived fungus Penicillium sp. SSW03M2 GY and their anti-virulence activity

Geris R, Simpson TJ. Meroterpenoids produced by fungi. Nat Prod Rep. 2009;26:1063–94.

Article  CAS  Google Scholar 

Zhao M, Tang Y, Xie J, Zhao Z, Cui H. Meroterpenoids produced by fungi: Occurrence, structural diversity, biological activities, and their molecular targets. Eur J Med Chem. 2021;209:112860.

Article  CAS  Google Scholar 

Stierle DB, Stierle AA, Patacini B, McIntyre K, Girtsman T, Bolstad E. Berkeleyones and related meroterpenes from a deep water acid mine waste fungus that inhibit the production of interleukin 1-β from induced inflammasomes. J Nat Prod. 2011;74:2273–7.

Article  CAS  Google Scholar 

Huang ZH, Liang X, Li CJ, Gu Q, Ma X, Qi SH. Talaromynoids A–I, highly oxygenated meroterpenoids from the marine-derived fungus Talaromyces purpureogenus SCSIO 41517 and their lipid accumulation inhibitory activities. J Nat Prod. 2021;84:2727–37.

Article  CAS  Google Scholar 

Long Y, Cui H, Liu X, Xiao Z, Wen S, She Z, et al. Acetylcholinesterase inhibitory meroterpenoid from a mangrove endophytic fungus Aspergillus sp. 16-5c. Molecules. 2017;22:727.

Article  CAS  Google Scholar 

Sun J, Zhu ZX, Song YL, Dong D, Zheng J, Liu T, et al. Nitric oxide inhibitory meroterpenoids from the fungus Penicillium purpurogenum MHZ 111. J Nat Prod. 2016;79:1415–22.

Article  CAS  Google Scholar 

Santos RM, Rodrigues-Filho E. Structures of meroterpenes produced by Penicillium sp, an endophytic fungus found associated with Melia azedarach. J Braz Chem Soc. 2003;14:722–7.

Article  Google Scholar 

de Silva ED, Williams DE, Jayanetti DR, Centko RM, Patrick BO, Wijesundera RL, et al. Dhilirolides A−D, meroterpenoids produced in culture by the fruit-infecting fungus Penicillium purpurogenum collected in Sri Lanka. Org Lett. 2011;13:1174–7.

Article  Google Scholar 

Arunpanichlert J, Rukachaisirikul V, Phongpaichit S, Supaphon O, Sakayaroj J. Meroterpenoid, isocoumarin, and phenol derivatives from the seagrass-derived fungus Pestalotiopsis sp. PSU-ES194. Tetrahedron. 2015;71:882–8.

Article  CAS  Google Scholar 

Fleitas Martínez O, Cardoso MH, Ribeiro SM, Franco OL. Recent advances in anti-virulence therapeutic strategies with a focus on dismantling bacterial membrane microdomains, toxin neutralization, quorum-sensing interference and biofilm inhibition. Front Cell Infect Microbiol 2019;9:74.

Article  Google Scholar 

Johnson BK, Abramovitch RB. Small molecules that sabotage bacterial virulence. Trends Pharmacol Sci. 2017;38:339–62.

Article  CAS  Google Scholar 

Ford CA, Hurford IM, Cassat JE. Antivirulence strategies for the treatment of Staphylococcus aureus infections: a mini review. Front Microbiol. 2021;11:632706.

Article  Google Scholar 

Berube BJ, Bubeck Wardenburg J. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins. 2013;5:1140–66.

Article  Google Scholar 

Li J, Yang X, Lin Y, Yuan J, Lu Y, Zhu X, et al. Meroterpenes and azaphilones from marine mangrove endophytic fungus Penicillium 303. Fitoterapia. 2014;97:241–6.

Article  CAS  Google Scholar 

Stierle DB, Stierle AA, Hobbs JD, Stokken J, Clardy J. Berkeleydione and berkeleytrione, new bioactive metabolites from an acid mine organism. Org Lett. 2004;6:1049–52.

Article  CAS  Google Scholar 

Iida M, Ooi T, Kito K, Yoshida S, Kanoh K, Shizuri Y, et al. Three new polyketide–terpenoid hybrids from Penicillium sp. Org Lett. 2008;10:845–8.

Article  CAS  Google Scholar 

Gu BB, Wu W, Liu LY, Tang J, Zeng YJ, Wang SP, et al. 3, 5‐Dimethylorsellinic acid derived meroterpenoids from Eupenicillium sp. 6A‐9, a fungus isolated from the marine sponge Plakortis simplex. Eur J Org Chem. 2018;2018:48–59.

Article  CAS  Google Scholar 

Stierle DB, Stierle AA, Patacini B. The berkeleyacetals, three meroterpenes from a deep water acid mine waste Penicillium. J Nat Prod. 2007;70:1820–3.

Article  CAS  Google Scholar 

Qi B, Liu X, Mo T, Zhu Z, Li J, Wang J, et al. 3, 5-Dimethylorsellinic acid derived meroterpenoids from Penicillium chrysogenum MT-12, an endophytic fungus isolated from Huperzia serrata. J Nat Prod. 2017;80:2699–707.

Article  CAS  Google Scholar 

Fill TP, Pereira GK, dos Santos RM, Rodrigues-Fo E. Four additional meroterpenes produced by Penicillium sp. found in association with Melia azedarach. Possible biosynthetic intermediates to austin. Z Naturforsch B. 2007;62:1035–44.

Article  CAS  Google Scholar 

Stephens PJ, Harada N. ECD cotton effect approximated by the Gaussian curve and other methods. Chirality. 2010;22:229–33.

CAS  Google Scholar 

Bonesso MF, Yeh AJ, Villaruz AE, Joo HS, McCausland J, Fortaleza CM, Cavalcante RS, Sobrinho MT, Ronchi CF, Cheung GY, Cunha ML, Otto M. Key role of α-toxin in fatal pneumonia caused by Staphylococcus aureus sequence type 398. Am J Respir Crit Care Med. 2016;193:217–20.

Article  CAS  Google Scholar 

Matsuda Y, Abe I. Biosynthesis of fungal meroterpenoids. Nat Prod Rep. 2016;33:26–53.

Article  CAS  Google Scholar 

Zhang T, Wan J, Zhan Z, Bai J, Liu B, Hu Y. Activation of an unconventional meroterpenoid gene cluster in Neosartorya glabra leads to the production of new berkeleyacetals. Acta Pharm Sin B. 2018;8:478–87.

Article  Google Scholar 

Kim DR, Lee Y, Kim HK, Kim W, Kim YG, Yang YH, et al. Phenol-Soluble Modulin-Mediated Aggregation of Community-Associated Methicillin-Resistant Staphylococcus aureus in Human Cerebrospinal Fluid. Cells. 2020;9:788.

Article  Google Scholar 

Joo HS, Otto M. The isolation and analysis of phenol-soluble modulins of Staphylococcus epidermidis. Methods Mol Biol. 2014;1106:93–100.

Article  CAS  Google Scholar 

Piewngam P, Zheng Y, Nguyen TH, Dickey SW, Joo HS, Villaruz AE, et al. Pathogen elimination by probiotic Bacillus via signalling interference. Nature. 2018;562:532–7.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif