Are frog calls relatively difficult to locate by mammalian predators?

Aaronson NL, Hartmann WM (2014) Testing, correcting, and extending the Woodworth model for interaural time difference. J Acoust Soc Am 135(2):817–823

Article  Google Scholar 

Ashida G, Carr CE (2011) Sound localization: Jeffress and beyond. Curr Opin Neurobiol 21(5):745–751

Article  Google Scholar 

Bee MA (2007) Sound source segregation in grey treefrogs: spatial release from masking by the sound of a chorus. Anim Behav 74(3):549–558

Article  Google Scholar 

Bee MA (2008) Finding a mate at a cocktail party: spatial release from masking improves acoustic mate recognition in grey treefrogs. Anim Behav 75:1781–1791

Article  Google Scholar 

Bradbury JW (1981) The evolution of leks. Natural selection and social behavior. Springer, Cham, pp 138–169

Google Scholar 

Brand A, Behrend O, Marquardt T, McAlpine D, Grothe B (2002) Precise inhibition is essential for microsecond interaural time difference coding. Nature 417(6888):543–547

Article  Google Scholar 

Brughera AR, Stutman ER, Carney LH, Colburn HS (1996) A model with excitation and inhibition for cells in the medial superior olive. Audit Neurosci 2:219–233

Google Scholar 

Carr CE, Konishi M (1990) A circuit for detection of interaural time differences in the brain stem of the barn owl. J Neurosci 10:3227–3246

Article  Google Scholar 

Cherry EC (1953) Some experiments on the recognition of speech, with one and with two ears. J Acoust Soc Am 25(5):975–979

Article  Google Scholar 

Christensen-Dalsgaard J (2005) Directional hearing in nonmammalian tetrapods. In: Popper AN, Fay RR (eds) Sound source localization. Springer, New York, pp 67–123

Chapter  Google Scholar 

Christensen-Dalsgaard J (2011) Vertebrate pressure-gradient receivers. Hear Res 273:37–45

Article  Google Scholar 

Feng AS (1980) Directional characteristics of the acoustic receiver of the leopard frog (Rana pipiens): a study of eighth nerve auditory responses. J Acoust Soc Am 68:1107–1114

Article  Google Scholar 

Feng AS, Ratnam R (2000) Neural basis of hearing in real-world situations. Annu Rev Psychol 51(1):699–725

Article  Google Scholar 

Feng AS, Schul J (2007) Sound processing in real-world environments. In: Narins PM, Feng AS, Fay RR, Popper AN (eds) Hearing and sound communication in amphibians. Springer, New York, pp 323–350

Google Scholar 

Feng AS, Shofner WP (1981) Peripheral basis of sound localization in anurans. Acoustic properties of the frog’s ear. Hear Res 5:201–216

Article  Google Scholar 

Feng AS, Gerhardt HC, Capranica RR (1976) Sound localization behavior of the green treefrog (Hyla cinerea) and the barking treefrog (H. gratiosa). J Comp Physiol 107(3):241–252

Article  Google Scholar 

Fujita I, Konishi M (1991) The role of GABAergic inhibition in processing of interaural time difference in the owl’s auditory system. J Neurosci 11(3):722–739

Article  Google Scholar 

Gabor D (1946) Theory of communication. Part 1: the analysis of information. J IEEE-Part III 93(26):429–441

Google Scholar 

Gerhardt HC, Huber F (2002) Acoustic communication in insects and Anurans: common problems and diverse solutions. University of Chicago Press, Chicago

Google Scholar 

Glasberg BR, Moore BCJ (1990) Derivation of auditory filter shapes from notched-noise data. Hear Res 47:103–138

Article  Google Scholar 

Greenfield MD (1994a) Cooperation and conflict in the evolution of signal interactions. Annu Rev Ecol Syst 25:97–126

Article  Google Scholar 

Greenfield MD (1994b) Synchronous and alternating choruses in insects and anurans: common mechanisms and diverse functions. Am Zool 34(6):605–615

Article  Google Scholar 

Greenfield MD, Tourtellot MK, Snedden WA (1997) Precedence effects and the evolution of chorusing. Proc R Soc Lond B 264(1386):1355–1361

Article  Google Scholar 

Gridi-Papp M, Rand AS, Ryan MJ (2006) Complex call production in the túngara frog. Nature 441(7089):38–38

Article  Google Scholar 

Grothe B, Sanes DH (1994) Synaptic inhibition influences the temporal coding properties of medial superior olivary neurons: an in vitro study. J Neurosci 14(3):1701–1709

Article  Google Scholar 

Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

Article  Google Scholar 

Harper NS, McAlpine D (2004) Optimal neural population coding of an auditory spatial cue. Nature 430(7000):682–686

Article  Google Scholar 

Harper NS, Scott BH, Semple MN, McAlpine D (2014) The neural code for auditory space depends on sound frequency and head size in an optimal manner. PLoS One 9(11):e108154

Article  Google Scholar 

Heffner RS, Heffner HE (1987) Localization of noise, use of binaural cues, and a description of the superior olivary complex in the smallest carnivore, the least weasel (Mustela nivalis). Behav Neurosci 101(5):701–708

Article  Google Scholar 

Heffner RS, Heffner HE (1988) Sound localization and use of binaural cues by the gerbil (Meriones unguiculatus). Behav Neurosci 102(3):422–428

Article  Google Scholar 

Heffner RS, Heffner HE, Kearns D, Vogel J, Koay G (1994) Sound localization in chinchillas. I: Left/right discriminations. Hear Res 80(2):247–257

Article  Google Scholar 

Heffner RS, Koay G, Heffner HE (2007) Sound-localization acuity and its relation to vision in large and small fruit-eating bats: I. Echolocating species, Phyllostomus hastatus and Carollia perspicillata. Hear Res 234(1–2):1–9

Article  Google Scholar 

Ho CC, Narins PM (2006) Directionality of the pressure-difference receiver ears in the northern leopard frog, Rana pipiens pipiens. J Comp Physiol A 192(4):417–429

Article  Google Scholar 

Hermans P (2019) Audio synthesis of the túngara frog call. The Digital Naturalism Conference. https://www.dinacon.org/2019/09/11/laser-tungara-frog-synth/. Accessed Feb 5 2022

Jeffress LA (1948) A place theory of sound localization. J Comp Physiol Psychol 41:35–39

Article  Google Scholar 

Jones DL, Ratnam R (2009) Blind location and separation of callers in a natural chorus using a microphone array. J Acoust Soc Am 126(2):895–910

Article  Google Scholar 

Jones DL, Jones RL, Ratnam R (2014) Calling dynamics and call synchronization in a local group of unison bout callers. J Comp Physiol A 200(1):93–107

Article  Google Scholar 

Jørgensen MB (1991) Comparative studies of the biophysics of directional hearing in anurans. J Comp Physiol A 169(5):591–598

Article  Google Scholar 

Joris PX, Smith PH, Yin TC (1998) Coincidence detection in the auditory system: 50 years after Jeffress. Neuron 21(6):1235–1238

Article  Google Scholar 

Knudsen EI, Konishi M (1978) Space and frequency are represented separately in auditory midbrain of the owl. J Neurophysiol 41:870–884

Article  Google Scholar 

Koay G, Kearns D, Heffner HE, Heffner RS (1998) Passive sound-localization ability of the big brown bat (Eptesicus fuscus). Hear Res 119(1–2):37–48

Article  Google Scholar 

Legett HD, Page RA, Bernal XE (2019) Synchronized mating signals in a communication network: the challenge of avoiding predators while attracting mates. Proc R Soc B 286(1912):20191067

Article  Google Scholar 

Legett HD, Hemingway CT, Bernal XE (2020) Prey exploits the auditory illusions of eavesdropping predators. Am Nat 195(5):927–933

Article  Google Scholar 

Lesica NA, Lingner A, Grothe B (2010) Population coding of interaural time differences in gerbils and barn owls. J Neurosci 30(35):11696–11702

Article  Google Scholar 

Lewis ER, Narins PM (1999) The acoustic periphery of amphibians: anatomy and physiology. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 101–154

Chapter  Google Scholar 

Lin WY, Feng AS (2001) Free-field unmasking response characteristics of frog auditory nerve fibers: comparison with the responses of midbrain auditory neurons. J Comp Physiol A 187(9):699–712

Article  Google Scholar 

Litovsky RY, Colburn HS, Yost WA, Guzman SJ (1999) The precedence effect. J Acoust Soc Am 106(4):1633–1654

Article  Google Scholar 

Liu C, Wheeler BC, O’Brien WD Jr, Bilger RC, Lansing CR, Feng AS (2000) Localization of multiple sound sources with two microphones. J Acoust Soc Am 108(4):1888–1905

Article  Google Scholar 

Lockwood ME, Jones DL (2006) Beamformer performance with acoustic vector sensors in air. J Acoust Soc Am 119(1):608–619

Article  Google Scholar 

Marler P (1955) Characteristics of some animal calls. Nature 176(4470):6–8

Article  Google Scholar 

Marler P (1957) Specific distinctiveness in the communication signals of birds. Behaviour 11(1):13–39

Article  Google Scholar 

Marquardt T, McAlpine D (2007) A π-limit for coding ITDs: implications for binaural models. In: Kollmeier B, Hohmann V, Klump G, Langemann U, Mauermann M, Uppenkamp S, Verhey J (eds) Hearing-from sensory processing to perception. Springer, Berlin, pp 407–416

Chapter  Google Scholar 

Marshall VT, Gerhardt HC (2010) A precedence effect underlies preferences for calls with leading pulses in the grey treefrog, Hyla versicolor. Anim Behav 1(1):139–145

Article  Google Scholar 

McAlpine D, Grothe B (2003) Sound localization and delay lines–do mammals fit the model? Trends Neurosci 26(7):347–350

Article  Google Scholar 

McAlpine D, Jiang D, Palmer AR (2001) A neural code for low-frequency sound localization in mammals. Nat Neurosci 4(4):396–401

Article  Google Scholar 

McAlpine D, Thompson S, Kriegstein KV, Marquardt T, Griffiths T, Deane-Pratt A (2007) A π-limit for coding ITDs: neural responses and the binaural display. In: Kollmeier B, Hohmann V, Klump G, Langemann U, Mauermann M, Uppenkamp S, Verhey J (eds) Hearing-from sensory processing to perception. Springer, Berlin, pp 399–406

Chapter  Google Scholar 

Merricks JA (2014) Coordinated communication: An analysis of signal and preference phenotypes in the genus Hyla. Doctoral dissertation, University of Missouri-Columbia

Narins PM (2016) ICE on the road to auditory sensitivity reduction and sound localization in the frog. Biol Cybern 110(4):263–270

Article 

留言 (0)

沒有登入
gif