The relative sizes of nuclei in the oculomotor complex vary by order and behaviour in birds

Bringmann A (2019) Structure and function of the bird fovea. Anatom Histol Embryol 48:177–200

Article  Google Scholar 

Büttner-Ennever JA (2006) The extraocular motor nuclei: organization and functional neuroanatomy. Prog Brain Res 151:95–125

Article  Google Scholar 

Collewijn H, Martins A, Steinman R (1983) Compensatory eye movements during active and passive head movements: fast adaptation to changes in visual magnification. J Physiol 340:259–286

Article  CAS  Google Scholar 

Corfield JR, Long B, Krilow JM, Wylie DR, Iwaniuk AN (2016) A unique cellular scaling rule in the avian auditory system. Brain Struct Funct 221:2675–2693

Article  Google Scholar 

Cunha F, Racicot K, Nahirney J, Heuston C, Wylie DR, Iwaniuk AN (2020) Allometric scaling rules of the cerebellum in galliform birds. Brain Behav Evol 95:78–92

Article  Google Scholar 

De Groot S, Gebhard J (1952) Pupil size as determined by adapting luminance. J Optical Soc Amer 42:492–495

Article  Google Scholar 

Donaldson I, Knox PC (1991) Afferent signals from pigeon extraocular muscles modify the vestibular responses of units in the abducens nucleus. Proc R Soc Lond Ser B: Biol Sci 244:233–239

Article  CAS  Google Scholar 

Ericson PG, Anderson CL, Britton T, Elzanowski A, Johansson US, Källersjö M, Ohlson JI, Parsons TJ, Zuccon D, Mayr G (2006) Diversification of Neoaves: integration of molecular sequence data and fossils. Biol Lett 2:543–547

Article  Google Scholar 

Fite KV, Rosenfield-Wessels S (1975) A comparative study of deep avian foveas. Brain Behav Evol 12:97–115

Article  CAS  Google Scholar 

Fitzgerald M, Vana BA, Reiner A (1990) Control of choroidal blood flow by the nucleus of Edinger-Westphal in pigeons: a laser doppler study. Invest Ophthalmol vis Sci 31:2483–2492

CAS  Google Scholar 

Fox R, Lehmkuhle SW, Bush RC (1977) Stereopsis in the falcon. Science 197:79–81

Article  CAS  Google Scholar 

Gamlin PD, Reiner A (1991) The Edinger-Westphal nucleus: sources of input influencing accommodation, pupilloconstriction, and choroidal blood flow. J Comp Neurol 306:425–438

Article  CAS  Google Scholar 

Garamszegi LZ (2014) Modern phylogenetic comparative methods and their application in evolutionary biology: concepts and practice. Springer, Heidelberg

Book  Google Scholar 

Gardella D, Hatton WJ, Rind HB, Rosen GD, von Bartheld CS (2003) Differential tissue shrinkage and compression in the z-axis: implications for optical disector counting in vibratome-, plastic-and cryosections. J Neurosci Methods 124:45–59

Article  Google Scholar 

Van Gils J, Wiersma P, Kirwan GM (2020) Eurasian woodcock (Scolopax rusticola), version 1.0. In Birds of the World (del Hoyo J, Elliott A, Sargatal J, Christie DA, de Juana E, Eds). Cornell Lab of Ornithology, Ithaca, NY, USA

Glaeser G, Paulus HF (2015) The evolution of the eye. Springer, Heidelberg

Book  Google Scholar 

Glasser A, Howland HC (1996) A history of studies of visual accommodation in birds. Quart Rev Biol 71:475–509

Article  CAS  Google Scholar 

Glasser A, Murphy CJ, Troilo D, Howland HC (1995) The mechanism of lenticular accommodation in chicks. Vision Res 35:1525–1540

Article  CAS  Google Scholar 

Glasser A, Pardue MT, Andison ME, Sivak JG (1997) A behavioral study of refraction, corneal curvature, and accommodation in raptor eyes. Can J Zool 75:2010–2020

Article  Google Scholar 

Gundersen H, Jensen E, Kiêu K, Nielsen J (1999) The efficiency of systematic sampling in stereology—reconsidered. J Microscopy 193:199–211

Article  CAS  Google Scholar 

Gutiérrez-Ibáñez C, Iwaniuk AN, Lisney TJ, Faunes M, Marín GJ, Wylie DR (2012) Functional implications of species differences in the size and morphology of the isthmo optic nucleus (ION) in birds. PLoS One 7:e37816

Article  Google Scholar 

Hall M, Ross C (2007) Eye shape and activity pattern in birds. J Zool 271:437–444

Article  Google Scholar 

Heaton MB, Wayne DB (1983) Patterns of extraocular innervation by the oculomotor complex in the chick. J Comp Neurol 216:245–252

Article  CAS  Google Scholar 

Herculano-Houzel S, Manger PR, Kaas JH (2014) Brain scaling in mammalian evolution as a consequence of concerted and mosaic changes in numbers of neurons and average neuronal cell size. Front Neuroanat 8:77

Article  Google Scholar 

Herculano-Houzel S, Messeder DJ, Fonseca-Azevedo K, Pantoja NA (2015) When larger brains do not have more neurons: increased numbers of cells are compensated by decreased average cell size across mouse individuals. Front Neuroanat 9:64

Article  Google Scholar 

Howland HC, Rowland M, Schmid K, Pettigrew JD (1991) Restricted range of ocular accommodation in barn owls (Aves: Tytonidae). J Comp Physiol A 168:299–303

Article  Google Scholar 

Inzunza O, Bravo H, Smith RL, Angel M (1991) Topography and morphology of retinal ganglion cells in Falconiforms: a study on predatory and carrion-eating birds. Anat Rec 229:271–277

Article  CAS  Google Scholar 

Iwaniuk AN, Hurd PL (2005) The evolution of cerebrotypes in birds. Brain Behav Evol 65:215–230

Article  Google Scholar 

Iwaniuk AN, Wylie DRW (2006) The evolution of stereopsis and the Wulst in caprimulgiform birds: a comparative analysis. J Comp Physiol A 192:1313–1326

Article  Google Scholar 

Iwaniuk AN, Wylie DR (2020) Sensory systems in birds: What we have learned from studying sensory specialists. J Comp Neurol 528:2902–2918

Article  Google Scholar 

Jerison H (1973) Evolution of the brain and intelligence. Academic Press, New York

Google Scholar 

Jetz W, Thomas GH, Joy JB, Hartmann K, Mooers AO (2012) The global diversity of birds in space and time. Nature 491:444–448

Article  CAS  Google Scholar 

Katzir G, Howland HC (2003) Corneal power and underwater accommodation in great cormorants (Phalacrocorax carbo sinensis). J Exp Biol 206:833–841

Article  Google Scholar 

Knudsen EI (1982) Auditory and visual maps of space in the optic tectum of the owl. J Neurosci 2:1177–1194

Article  CAS  Google Scholar 

Krabichler Q, Vega-Zuniga T, Carrasco D, Fernandez M, Gutierrez-Ibanez C, Marin G, Luksch H (2017) The centrifugal visual system of a palaeognathous bird, the Chilean Tinamou (Nothoprocta perdicaria). J Comp Neurol 525:2514–2534

Article  CAS  Google Scholar 

Labandeira-Garcia J, Guerra-Seijas M, Segade L, Suarez-Nuñez J (1987) Identification of abducens motoneurons, accessory abducens motoneurons, and abducens internuclear neurons in the chick by retrograde transport of horseradish peroxidase. J Comp Neurol 259:140–149

Article  CAS  Google Scholar 

Land MF (2015) Eye movements of vertebrates and their relation to eye form and function. J Comp Physiol A 201:195–214

Article  Google Scholar 

Land M (2019) Eye movements in man and other animals. Vision Res 162:1–7

Article  Google Scholar 

Land M, Mennie N, Rusted J (1999) The roles of vision and eye movements in the control of activities of daily living. Perception 28:1311–1328

Article  CAS  Google Scholar 

Levy B, Sivak J (1980) Mechanisms of accommodation in the bird eye. J Comp Physiol 137:267–272

Article  Google Scholar 

Lind OE, Kelber A, Kröger RH (2008) Multifocal optical systems and pupil dynamics in birds. J Exp Biol 211:2752–2758

Article  Google Scholar 

Lisney TJ, Iwaniuk AN, Bandet MV, Wylie DR (2012) Eye shape and retinal topography in owls (Aves: Strigiformes). Brain Behav Evol 79:218–236

Article  Google Scholar 

Lord RD Jr (1956) A comparative study of the eyes of some falconiform and passeriform birds. Am Midl Nat 56:325–344

Article  Google Scholar 

Machovsky-Capuska GE, Howland HC, Raubenheimer D, Vaughn-Hirshorn R, Würsig B, Hauber ME, Katzir G (2012) Visual accommodation and active pursuit of prey underwater in a plunge-diving bird: the Australasian gannet. Proc R Soc B: Biol Sci 279:4118–4125

Article  Google Scholar 

Martin GR (1984) The visual fields of the tawny owl, Strix aluco L. Vision Res 24:1739–1751

Article  CAS  Google Scholar 

Martin GR (1986) The eye of a passeriform bird, the European starling (Sturnus vulgaris): eye movement amplitude, visual fields and schematic optics. J Comp Physiol A 159:545–557

Martin GR (1994) Visual fields in woodcocks Scolopax rusticola (Scolopacidae; Charadriiformes). J Comp Physiol A 174:787–793

Article  Google Scholar 

Martin GR (1999) Eye structure and foraging in King Penguins Aptenodytes patagonicus. Ibis 141:444–450

Article  Google Scholar 

Martin GR (2007) Visual fields and their functions in birds. J Ornith 148:547–562

Article  Google Scholar 

Martin GR (2009) What is binocular vision for? A Birds’ Eye View. J Vision 9:14

Article  Google Scholar 

Martin GR (2017) The sensory ecology of birds. Oxford University Press, Oxford

Book  Google Scholar 

Martin GR, Katzir G (1994) Visual fields and eye movements in herons (Ardeidae). Brain Behav Evol 44:74–85

Article  CAS  Google Scholar 

Marwitt R, Pilar G, Weakly J (1971) Characterization of two ganglion cell populations in avian ciliary ganglia. Brain Res 25:317–334

Article  CAS  Google Scholar 

Moore BA, Doppler M, Young JE, Fernández-Juricic E (2013) Interspecific differences in the visual system and scanning behavior of three forest passerines that form heterospecific flocks. J Comp Physiol A 199:263–277

Article 

留言 (0)

沒有登入
gif