Electromagnetic field stimulation facilitates motor neuron excitability, myogenesis and muscle contractility in spinal cord transected rats

Beaulieu L and Schneider C 2013 Effects of repetitive peripheral magnetic stimulation on normal or impaired motor control. A review. Clin. Neurophysiol. 43 251–260

Article  Google Scholar 

Calancie B, Broton JG, Klose KJ, et al. 1993 Evidence that alterations in presynaptic inhibition contribute to segmental hypo-and hyperexcitability after spinal cord injury in man. Electroencephalogr. Clin. Neurophysiol. 89 177–186

Article  Google Scholar 

Chakraborty A, Arvind A, Srivastav S, et al. 2019 Demonstration of nerve muscle preparation in rats: for nerve-muscle physiology Teaching. IJPP 63 66–72

Google Scholar 

Chalfouh C, Guillou C, Hardouin J, et al. 2020 The regenerative effect of trans-spinal magnetic stimulation after spinal cord injury: mechanisms and pathways underlying the effect. Neurotherapeutics 17 2069–2088

Article  Google Scholar 

Chin ER, Olson EN, Richardson JA, et al. 1998A A calcineurin-dependent transcriptional pathway controls skeletal muscle fiber type. Genes Dev. 12 2499–2509

Article  Google Scholar 

Coletti D, Teodori L, Albertini MC, et al. 2007 Static magnetic fields enhance skeletal muscle differentiation in vitro by improving myoblast alignment. Cytometry A 71 846–856

Article  Google Scholar 

Das S, Kumar S, Jain S, Avelev VD and Mathur R 2012 Exposure to ELF-magnetic field promotes restoration of sensori-motor functions in adult rats with hemisection of thoracic spinal cord. Electromagn. Biol. Med. 31 180–194

Article  Google Scholar 

Dey S, Bose S, Kumar S, Rathore R, Mathur R and Jain S 2017 Extremely low frequency magnetic field protects injured spinal cord from the microglia-and iron-induced tissue damage. Electromagn. Biol. Med. 36 330–340

Article  Google Scholar 

Dupont-Versteegden EE, Houlé JD, Gurley CM and Peterson CA 1998 Early changes in muscle fiber size and gene expression in response to spinal cord transection and exercise. Am. J. Physiol. Cell Physiol. 275 C 1124-C 1133

Article  Google Scholar 

Dziki JL, Velayutham M, Hussey GS and Turnquist HR 2018 Cytokine networks in immune-mediated muscle regeneration. J. Tissue Eng. Regen. Med. 1 32–44

Google Scholar 

Graham ZA, Goldberger A, Azulai D, et al. 2020 Contusion spinal cord injury upregulates p53 protein expression in rat soleus muscle at multiple timepoints but not key senescence cytokines. Physiol. Rep. 8 e 14357

Article  Google Scholar 

Guellich A, Negroni E, Decostre V, Demoule A and Coirault C 2014 Altered cross-bridge properties in skeletal muscle dystrophies. Front. Physiol. 5 393

Article  Google Scholar 

Hofstoetter US, Danner SM, Freundl B, et al. 2015 Periodic modulation of repetitively elicited monosynaptic reflexes of the human lumbosacral spinal cord. J. Neurophysiol. 114 400–410

Article  Google Scholar 

Howard EE, Pasiakos SM, Blesso CN, Fussell MA and Rodriguez NR 2020 Divergent roles of inflammation in skeletal muscle recovery from injury. Front. Physiol. 11 87

Article  Google Scholar 

Iwamoto Y, Miyakoshi N, Matsunaga T, Kudo D and Saito K 2019 Effect of frequency-modulated repetitive peripheral magnetic stimulation (rPMS) on leg muscle atrophy in animal model. Int. J. Phys. Med. Rehab. 7 2

Google Scholar 

Järvinen TA, Józsa L, Kannus P, Järvinen TL and Järvinen M 2002 Organization and distribution of intramuscular connective tissue in normal and immobilized skeletal muscles. J. Muscle Res. Cell Motil. 23 245–254

Article  Google Scholar 

Jayaraman A, Liu M, Ye F, Walter GA and Vandenborne K 2013 Regenerative responses in slow-and fast-twitch muscles following moderate contusion spinal cord injury and locomotor training. Eur. J. Appl. Physiol. 113 191–200

Article  Google Scholar 

Jimena I, Tasset I, Lopez-Martos R, et al. 2009 Effects of magnetic stimulation on oxidative stress and skeletal muscle regeneration induced by mepivacaine in rat. J. Med. Chem. 5 44–49

Article  Google Scholar 

Knikou M and Murray LM 2019 Repeated transspinal stimulation decreases soleus H-reflex excitability and restores spinal inhibition in human spinal cord injury. PloS One 14 e 0223135

Article  Google Scholar 

Krishnan VS, Shin SS, Belegu V, et al. 2019 Multimodal evaluation of TMS-induced somatosensory plasticity and behavioral recovery in rats with contusion spinal cord injury. Front. Behav. Neurosci. 13 387

Article  Google Scholar 

Kumar S, Jain S, Velpandian T, et al. 2013 Exposure to extremely low-frequency magnetic field restores spinal cord injury-induced tonic pain and its related neurotransmitter concentration in the brain. Electromagn. Biol. Med. 32 471–483

Article  Google Scholar 

Lee JK, Emch GS, Johnson CS and Wrathall JR 2005 Effect of spinal cord injury severity on alterations of the H-reflex. Exp. Neurol. 196 430–440

Article  Google Scholar 

Li Y and Bennett DJ 2003 Persistent sodium and calcium currents cause plateau potentials in motoneurons of chronic spinal rats. J. Neurophysiol. 90 857–869

Article  Google Scholar 

Lieber RL, Fridén JO, Hargens AR and Feringa ER 1986 Long-term effects of spinal cord transection on fast and slow rat skeletal muscle: II. Morphometric Properties. Exp. Neurol. 91 435–448

Article  Google Scholar 

Little JW, Ditunno JF Jr, Stiens SA and Harris RM 1999 Incomplete spinal cord injury: neuronal mechanisms of motor recovery and hyperreflexia. Arch. Phys. Med. Rehab. 80 587–599

Article  Google Scholar 

Liu M, Bose P, Walter G, Thompson F and Vandenborne K 2008 A longitudinal study of skeletal muscle following spinal cord injury and locomotor training. Spinal Cord 46 488–493

Article  Google Scholar 

Luo J, Zheng H, Zhang L, et al. 2017 High-frequency repetitive transcranial magnetic stimulation (rTMS) improves functional recovery by enhancing neurogenesis and activating BDNF/TrkB signaling in ischemic rats. Int. J. Mol. Sci. 18 455

Article  Google Scholar 

Murray LM and Knikou M 2019 Transspinal stimulation increases motoneuron output of multiple segments in human spinal cord injury. Plos One 14 e 0213696

Article  Google Scholar 

Pal A, Singh A, Nag TC, et al. 2013 Iron oxide nanoparticles and magnetic field exposure promote functional recovery by attenuating free radical-induced damage in rats with spinal cord transection. Int. J. Nanomed. 8 2259

Google Scholar 

Pal A, Kumar S, Jain S, Nag TC and Mathur R 2018 Neuroregenerative effects of electromagnetic field and magnetic nanoparticles on spinal cord injury in rats. J. Nanosci. 18 6756–6764

Google Scholar 

Palexas GN, Savage N and Isaacs H 1981 Characteristics of sarcoplasmic reticulum from normal and denervated rat skeletal muscle. Biochem. J. 200 11–15

Article  Google Scholar 

Pall ML 2013 Electromagnetic fields act via activation of voltage-gated calcium channels to produce beneficial or adverse effects. J. Cell Mol. Med. 17 958–965

Article  Google Scholar 

Petrosyan H, Liang L, Tesfa A, et al. 2020 Modulation of H-reflex responses and frequency-dependent depression by repetitive spinal electromagnetic stimulation: From rats to humans and back to chronic spinal cord injured rats. Eur. J. Neurosci. 52 4875–4889

Article  Google Scholar 

Poirrier AL, Nyssen Y, Scholtes F, et al. 2004 Repetitive transcranial magnetic stimulation improves open field locomotor recovery after low but not high thoracic spinal cord compression-injury in adult rats. J. Neurosci. Res. 75 253–261

Article  Google Scholar 

Reese N, Skinner R, Mitchell D, et al. 2006 Restoration of frequency-dependent depression of the H-reflex by passive exercise in spinal rats. Spinal Cord 44 28–34

Article  Google Scholar 

Rosen AD 1992 Magnetic field influence on acetylcholine release at the neuromuscular junction. Am. J. Physiol. Cell Physiol. 262 C 1418-C 1422

Article  Google Scholar 

Sayenko DG, Angeli C, Harkema SJ, Edgerton VR and Gerasimenko YP 2014 Neuromodulation of evoked muscle potentials induced by epidural spinal-cord stimulation in paralyzed individuals. J. Neurophysiol. 111 1088–1099

Article  Google Scholar 

Schindler-Ivens S and Shields RK 2000 Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Exp. Brain Res. 133 233–241

Article  Google Scholar 

Schulte L, Peters D, Taylor J, Navarro J and Kandarian S 1994 Sarcoplasmic reticulum Ca2+ pump expression in denervated skeletal muscle. Am. J. Physiol. Cell Physiol. 267 C617–C622

Article  Google Scholar 

Shields RK 2002 Muscular, skeletal, and neural adaptations following spinal cord injury. J. Orthop. Sports Phys. Ther. 32 65–74

Article  Google Scholar 

Shimada Y, Sakuraba T, Matsunaga T, et al. 2006 Effects of therapeutic magnetic stimulation on acute muscle atrophy in rats after hindlimb suspension. Biomed. Res. 27 23–27

Article  Google Scholar 

Skinner R, Houle J, Reese N, Berry C and Garcia-Rill E 1996 Effects of exercise and fetal spinal cord implants on the H-reflex in chronically spinalized adult rats. Brain Res. 729 127–131

Article  Google Scholar 

Stern-Straeter J, Bonaterra GA, Kassner SS, et al. 2011 Impact of static magnetic fields on human myoblast cell cultures. Int. J. Mol. Med. 28 907–917

Google Scholar 

Stevens JE, Liu M, Bose P, et al. 2006 Changes in soleus muscle function and fiber morphology with one week of locomotor training in spinal cord contusion injured rats. J. Neurotrauma 231 671–1681

Google Scholar 

Stölting MN, Arnold AS, Haralampieva D, et al. 2016 Magnetic stimulation supports muscle and nerve regeneration after trauma in mice. Muscle Nerve 53 598–607

Google Scholar 

Stratton JA, Holmes A, Rosin NL, et al. 2018 Macrophages regulate Schwann cell maturation after nerve injury. Cell Rep. 24 2561–2572

Article  Google Scholar 

Sun Z-C, Ge J-L, Guo B, et al. 2016 Extremely low frequency electromagnetic fields facilitate vesicle endocytosis by increasing presynaptic calcium channel expression at a central synapse. Sci. Rep. 6 21774

Article  Google Scholar 

Talmadge RJ 2000 Myosin heavy chain isoform expression following reduced neuromuscular activity: potential regulatory mechanisms. Muscle Nerve 23 661–679

Article  Google Scholar 

Talmadge R, Castro M, JrD Apple and Dudley G 2002 Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J. Appl. Physiol. 92 147–154

Article  Google Scholar 

Tekieh T, Sasanpour P and Rafii-Tabar H 2016 Effects of electromagnetic field exposure on conduction and concentration of voltage gated calcium channels: A Brownian dynamics study. Brain Res. 1646 560–569

Article  Google Scholar 

Thompson F, Reier P and Lucas Cand Parmer R 1992 Altered patterns of reflex excitability subsequent to contusion injury of the rat spinal cord. J. Neurophysiol. 68 1473–1486

Article  Google Scholar 

Valero-Cabré A, Forés J and Navarro X 2004 Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection. J. Neurophysiol. 91 2838–2848

Article 

留言 (0)

沒有登入
gif