Circadian disruption: from mouse models to molecular mechanisms and cancer therapeutic targets

Shafi, A. A., & Knudsen, K. E. (2019). Cancer and the circadian clock. Cancer Research, 79(15), 3806–3814. https://doi.org/10.1158/0008-5472.Can-19-0566

Article  CAS  Google Scholar 

Huang, W., Ramsey, K. M., Marcheva, B., & Bass, J. (2011). Circadian rhythms, sleep, and metabolism. The Journal of Clinical Investigation, 121(6), 2133–2141. https://doi.org/10.1172/jci46043

Article  CAS  Google Scholar 

Panda, S. (2016). Circadian physiology of metabolism. Science, 354(6315), 1008–1015. https://doi.org/10.1126/science.aah4967

Article  CAS  Google Scholar 

Firsov, D., & Bonny, O. (2018). Circadian rhythms and the kidney. Nature Reviews. Nephrology, 14(10), 626–635. https://doi.org/10.1038/s41581-018-0048-9

Article  CAS  Google Scholar 

Brancaccio, M., Edwards, M. D., Patton, A. P., Smyllie, N. J., Chesham, J. E., Maywood, E. S., et al. (2019). Cell-autonomous clock of astrocytes drives circadian behavior in mammals. Science, 363(6423), 187–192. https://doi.org/10.1126/science.aat4104

Article  CAS  Google Scholar 

Millar, A. J. (2016). The intracellular dynamics of circadian clocks reach for the light of ecology and evolution. Annual Review of Plant Biology, 67, 595–618. https://doi.org/10.1146/annurev-arplant-043014-115619

Article  CAS  Google Scholar 

Poggiogalle, E., Jamshed, H., & Peterson, C. M. (2018). Circadian regulation of glucose, lipid, and energy metabolism in humans. Metabolism, 84, 11–27. https://doi.org/10.1016/j.metabol.2017.11.017

Article  CAS  Google Scholar 

Ruan, G. X., Gamble, K. L., Risner, M. L., Young, L. A., & McMahon, D. G. (2012). Divergent roles of clock genes in retinal and suprachiasmatic nucleus circadian oscillators. PLoS ONE, 7(6), e38985. https://doi.org/10.1371/journal.pone.0038985

Article  CAS  Google Scholar 

St John, P. C., Hirota, T., Kay, S. A., & Doyle, F. J., 3rd. (2014). Spatiotemporal separation of PER and CRY posttranslational regulation in the mammalian circadian clock. Proc Natl Acad Sci USA, 111(5), 2040–2045. https://doi.org/10.1073/pnas.1323618111

Article  CAS  Google Scholar 

Challet, E. (2019). The circadian regulation of food intake. Nature Reviews. Endocrinology, 15(7), 393–405. https://doi.org/10.1038/s41574-019-0210-x

Article  Google Scholar 

Lee, J., Lee, S., Chung, S., Park, N., Son, G. H., An, H., et al. (2016). Identification of a novel circadian clock modulator controlling BMAL1 expression through a ROR/REV-ERB-response element-dependent mechanism. Biochemical and Biophysical Research Communications, 469(3), 580–586. https://doi.org/10.1016/j.bbrc.2015.12.030

Article  CAS  Google Scholar 

Gerhart-Hines, Z., & Lazar, M. A. (2015). Rev-erbα and the circadian transcriptional regulation of metabolism. Diabetes Obes Metab, 17 Suppl 1(0 1), 12–16. https://doi.org/10.1111/dom.12510

Kojetin, D. J., & Burris, T. P. (2014). REV-ERB and ROR nuclear receptors as drug targets. Nature Reviews. Drug Discovery, 13(3), 197–216. https://doi.org/10.1038/nrd4100

Article  CAS  Google Scholar 

Mohawk, J. A., Green, C. B., & Takahashi, J. S. (2012). Central and peripheral circadian clocks in mammals. Annual Review of Neuroscience, 35, 445–462. https://doi.org/10.1146/annurev-neuro-060909-153128

Article  CAS  Google Scholar 

Zhou, L., Zhang, Z., Nice, E., Huang, C., Zhang, W., & Tang, Y. (2022). Circadian rhythms and cancers: The intrinsic links and therapeutic potentials. Journal of Hematology & Oncology, 15(1), 21. https://doi.org/10.1186/s13045-022-01238-y

Article  CAS  Google Scholar 

Lamia, K. A., Sachdeva, U. M., DiTacchio, L., Williams, E. C., Alvarez, J. G., Egan, D. F., et al. (2009). AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science, 326(5951), 437–440. https://doi.org/10.1126/science.1172156

Article  CAS  Google Scholar 

Um, J. H., Yang, S., Yamazaki, S., Kang, H., Viollet, B., Foretz, M., et al. (2007). Activation of 5’-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. Journal of Biological Chemistry, 282(29), 20794–20798. https://doi.org/10.1074/jbc.C700070200

Article  CAS  Google Scholar 

Ramanathan, C., Kathale, N. D., Liu, D., Lee, C., Freeman, D. A., Hogenesch, J. B., et al. (2018). mTOR signaling regulates central and peripheral circadian clock function. PLoS Genetics, 14(5), e1007369. https://doi.org/10.1371/journal.pgen.1007369

Article  CAS  Google Scholar 

Lipton, J. O., Boyle, L. M., Yuan, E. D., Hochstrasser, K. J., Chifamba, F. F., Nathan, A., et al. (2017). Aberrant proteostasis of BMAL1 underlies circadian abnormalities in a paradigmatic mTOR-opathy. Cell Reports, 20(4), 868–880. https://doi.org/10.1016/j.celrep.2017.07.008

Article  CAS  Google Scholar 

Peek, C. B., Levine, D. C., Cedernaes, J., Taguchi, A., Kobayashi, Y., Tsai, S. J., et al. (2017). Circadian clock interaction with HIF1alpha mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metabolism, 25(1), 86–92. https://doi.org/10.1016/j.cmet.2016.09.010

Article  CAS  Google Scholar 

Magnelli, L., Schiavone, N., Staderini, F., Biagioni, A., & Papucci, L. (2020). MAP kinases pathways in gastric cancer. Int J Mol Sci, 21(8). https://doi.org/10.3390/ijms21082893

Yoshitane, H., Honma, S., Imamura, K., Nakajima, H., Nishide, S. Y., Ono, D., et al. (2012). JNK regulates the photic response of the mammalian circadian clock. EMBO Reports, 13(5), 455–461. https://doi.org/10.1038/embor.2012.37

Article  CAS  Google Scholar 

Sahar, S., Zocchi, L., Kinoshita, C., Borrelli, E., & Sassone-Corsi, P. (2010). Regulation of BMAL1 protein stability and circadian function by GSK3beta-mediated phosphorylation. PLoS ONE, 5(1), e8561. https://doi.org/10.1371/journal.pone.0008561

Article  CAS  Google Scholar 

Jiang, W., Zhao, S., Jiang, X., Zhang, E., Hu, G., Hu, B., et al. (2016). The circadian clock gene Bmal1 acts as a potential anti-oncogene in pancreatic cancer by activating the p53 tumor suppressor pathway. Cancer Letters, 371(2), 314–325. https://doi.org/10.1016/j.canlet.2015.12.002

Article  CAS  Google Scholar 

Miki, T., Matsumoto, T., Zhao, Z., & Lee, C. C. (2013). p53 regulates Period2 expression and the circadian clock. Nature Communications, 4, 2444. https://doi.org/10.1038/ncomms3444

Article  CAS  Google Scholar 

Koyanagi, S., Hamdan, A. M., Horiguchi, M., Kusunose, N., Okamoto, A., Matsunaga, N., et al. (2011). cAMP-response element (CRE)-mediated transcription by activating transcription factor-4 (ATF4) is essential for circadian expression of the Period2 gene. Journal of Biological Chemistry, 286(37), 32416–32423. https://doi.org/10.1074/jbc.M111.258970

Article  CAS  Google Scholar 

He, F., Antonucci, L., & Karin, M. (2020). NRF2 as a regulator of cell metabolism and inflammation in cancer. Carcinogenesis, 41(4), 405–416. https://doi.org/10.1093/carcin/bgaa039

Article  CAS  Google Scholar 

He, F., Antonucci, L., Yamachika, S., Zhang, Z., Taniguchi, K., Umemura, A., et al. (2020). NRF2 activates growth factor genes and downstream AKT signaling to induce mouse and human hepatomegaly. Journal of Hepatology, 72(6), 1182–1195. https://doi.org/10.1016/j.jhep.2020.01.023

Article  CAS  Google Scholar 

Early, J. O., Menon, D., Wyse, C. A., Cervantes-Silva, M. P., Zaslona, Z., Carroll, R. G., et al. (2018). Circadian clock protein BMAL1 regulates IL-1beta in macrophages via NRF2. Proc Natl Acad Sci U S A, 115(36), E8460–E8468. https://doi.org/10.1073/pnas.1800431115

Article  CAS  Google Scholar 

Wible, R. S., Ramanathan, C., Sutter, C. H., Olesen, K. M., Kensler, T. W., Liu, A. C., et al. (2018). NRF2 regulates core and stabilizing circadian clock loops, coupling redox and timekeeping in Mus musculus. Elife, 7. https://doi.org/10.7554/eLife.31656

Chen, L., & Yang, G. (2014). PPARs integrate the mammalian clock and energy metabolism. PPAR Research, 2014, 653017. https://doi.org/10.1155/2014/653017

Article  CAS  Google Scholar 

McNamara, P., Seo, S. B., Rudic, R. D., Sehgal, A., Chakravarti, D., & FitzGerald, G. A. (2001). Regulation of CLOCK and MOP4 by nuclear hormone receptors in the vasculature: A humoral mechanism to reset a peripheral clock. Cell, 105(7), 877–889. https://doi.org/10.1016/s0092-8674(01)00401-9

Article  CAS  Google Scholar 

Oishi, K., Shirai, H., & Ishida, N. (2005). CLOCK is involved in the circadian transactivation of peroxisome-proliferator-activated receptor alpha (PPARalpha) in mice. The Biochemical Journal, 386(Pt 3), 575–581. https://doi.org/10.1042/bj20041150

Article  CAS  Google Scholar 

Schmutz, I., Ripperger, J. A., Baeriswyl-Aebischer, S., & Albrecht, U. (2010). The mammalian clock component PERIOD2 coordinates circadian output by interaction with nuclear receptors. Genes & Development, 24(4), 345–357. https://doi.org/10.1101/gad.564110

Article  CAS  Google Scholar 

Wang, S., Lin, Y., Gao, L., Yang, Z., Lin, J., Ren, S., et al. (2022). PPAR-γ integrates obesity and adipocyte clock through epigenetic regulation of Bmal1. Theranostics, 12(4), 1589–1606. https://doi.org/10.7150/thno.69054

Article  CAS  Google Scholar 

Li, S., & Lin, J. D. (2015). Transcriptional control of circadian metabolic rhythms in the liver. Diabetes Obes Metab, 17 Suppl 1(0 1), 33–38. https://doi.org/10.1111/dom.12520

Zhao, X., Hirota, T., Han, X., Cho, H., Chong, L. W., Lamia, K., et al. (2016). Circadian amplitude regulation via FBXW7-targeted REV-ERBα degradation. Cell, 165(7), 1644–1657. https://doi.org/10.1016/j.cell.2016.05.012

Article  CAS  Google Scholar 

Kwak, Y., Jeong, J., Lee, S., Park, Y. U., Lee, S. A., Han, D. H., et al. (2013). Cyclin-dependent kinase 5 (Cdk5) regulates the function of CLOCK protein by direct phosphorylation. Journal of Biological Chemistry, 288(52), 36878–36889. https://doi.org/10.1074/jbc.M113.494856

Article  CAS  Google Scholar 

Ou, J., Li, H., Qiu, P., Li, Q., Chang, H. C., & Tang, Y. C. (2019). CDK9 modulates circadian clock by attenuating REV-ERBα activity. Biochemical and Biophysical Research Communications, 513(4), 967–973. https://doi.org/10.1016/j.bbrc.2019.04.043

Article  CAS  Google Scholar 

Lee, Y., Lee, J., Kwon, I., Nakajima, Y., Ohmiya, Y., Son, G. H., et al. (2010). Coactivation of the CLOCK-BMAL1 complex by CBP mediates resetting of the circadian clock. Journal of Cell Science, 123(Pt 20), 3547–3557. https://doi.org/10.1242/jcs.070300

Article  CAS  Google Scholar 

Shi, G., Xie, P., Qu, Z., Zhang, Z., Dong, Z., An, Y., et al. (2016). Distinct roles of HDAC3 in the core circadian negative feedback loop are critical for clock function. Cell Reports, 14(4), 823–834. https://doi.org/10.1016/j.celrep.2015.12.076

Article  CAS  Google Scholar 

Travis, R. C., Balkwill, A., Fensom, G. K., Appleby, P. N., Reeves, G. K., Wang, X. S., et al. (2016). Night shift work and breast cancer incidence: Three prospective studies and meta-analysis of published studies. J Natl Cancer Inst, 108(12). https://doi.org/10.1093/jnci/djw169

Lin, X., Chen, W., Wei, F., Ying, M., Wei, W., & Xie, X. (2015). Night-shift work increases morbidity of breast cancer and all-cause mortality: A meta-analysis of 16 prospective cohort studies. Sleep Medicine, 16(11), 1381–1387. https://doi.org/10.1016/j.sleep.2015.02.543

Article  Google Scholar 

留言 (0)

沒有登入
gif