Dapagliflozin Presented Nonalcoholic Fatty Liver Through Metabolite Extraction and AMPK/NLRP3 Signaling Pathway

  SFX Search  Buy Article Permissions and Reprints Abstract

In recent years, the incidence rate of nonalcoholic fatty liver disease (NAFLD) has been increasing year by year. The experiments conducted on rat elucidated the effect and underlying mechanism of dapagliflozin in NAFLD. Sprague Dawley rats were fed with HFD (Fat accounts for 52%, carbohydrate 34% and protein 14%) for 12 weeks as NAFLD model. Dapagliflozin presented NAFLD in rat model. Dapagliflozin reduced oxidative stress and inflammation in rat model of NAFLD. Dapagliflozin reduced oxidative stress and inflammation in vitro model of NAFLD. Dapagliflozin in a model of NAFLD metabolized into histamine H1 receptor, caffeine metabolism, mannose type O-glycan biosynthesis, choline metabolism in cancer, tryptophan metabolism, and glycerophospholipid metabolism. Dapagliflozin induced AMPK/NLRP3 signaling pathway. The regulation of AMPK/NLRP3 signaling pathway affected the effects of dapagliflozin on nonalcoholic fatty liver. In summary, dapagliflozin plays a preventative role in NAFLD through metabolite extraction, the inhibition of oxidative stress, and inflammation by AMPK/NLRP3 signaling pathway. Dapagliflozin may be a potential therapeutic agent for oxidative stress and inflammation in model of NAFLD.

Key words dapagliflozin - nonalcoholic fatty liver - metabolite extraction - AMPK - NLRP3 Publication History

Received: 23 June 2022

Accepted after revision: 14 October 2022

Article published online:
09 December 2022

© 2022. Thieme. All rights reserved.

Georg Thieme Verlag KG
Rüdigerstraße 14, 70469 Stuttgart, Germany

留言 (0)

沒有登入
gif