The role of learning-walk related multisensory experience in rewiring visual circuits in the desert ant brain

Ai H, Nishino H, Itoh T (2007) Topographic organization of sensory afferents of Johnston’s organ in the honeybee brain. J Comp Neurol 502:1030–1046. https://doi.org/10.1002/cne.21341

Article  Google Scholar 

Ardin P, Peng F, Mangan M, Lagogiannis K, Webb B (2016) Using an insect mushroom body circuit to encode route memory in complex natural environments. PLoS Comput Biol 12:e1004683. https://doi.org/10.1371/journal.pcbi.1004683

Article  CAS  Google Scholar 

Becker N, Kucharski R, Rössler W, Maleszka R (2016) Age-dependent transcriptional and epigenomic responses to light exposure in the honey bee brain. FEBS Open Bio 6:622–639. https://doi.org/10.1002/2211-5463.12084

Article  CAS  Google Scholar 

Becker MC, Rössler W, Strube-Bloss MF (2019) UV light perception is modulated by the odour element of an olfactory-visual compound in restrained honeybees. J Exp Biol. https://doi.org/10.1242/jeb.201483

Article  Google Scholar 

Beer K, Kolbe E, Kahana NB, Yayon N, Weiss R, Menegazzi P, Bloch G, Helfrich-Förster C (2018) Pigment-dispersing factor-expressing neurons convey circadian information in the honey bee brain. Open Biol. https://doi.org/10.1098/rsob.170224

Article  Google Scholar 

Buehlmann C, Hansson BS, Knaden M (2012) Path integration controls nest-plume following in desert ants. Curr Biol 22:645–649. https://doi.org/10.1016/j.cub.2012.02.029

Article  CAS  Google Scholar 

Buehlmann C, Graham P, Hansson BS, Knaden M (2014) Desert ants locate food by combining high sensitivity to food odors with extensive crosswind runs. Curr Biol 24:960–964. https://doi.org/10.1016/j.cub.2014.02.056

Article  CAS  Google Scholar 

Buehlmann C, Wozniak B, Goulard R, Webb B, Graham P, Niven JE (2020) Mushroom bodies are required for learned visual navigation, but not for innate visual behavior, in ants. Curr Biol 30:3438-3443.e2. https://doi.org/10.1016/j.cub.2020.07.013

Article  CAS  Google Scholar 

Cheng K, Schultheiss P, Schwarz S, Wystrach A, Wehner R (2014) Beginnings of a synthetic approach to desert ant navigation. Behav Process 102:51–61. https://doi.org/10.1016/j.beproc.2013.10.001

Article  Google Scholar 

Collett M, Collett TS (2018) How does the insect central complex use mushroom body output for steering? Curr Biol 28:R733–R734. https://doi.org/10.1016/j.cub.2018.05.060

Article  CAS  Google Scholar 

Currier TA, Nagel KI (2020) Multisensory control of navigation in the fruit fly. Curr Opin Neurobiol 64:10–16. https://doi.org/10.1016/j.conb.2019.11.017

Article  CAS  Google Scholar 

Dacke M, Bell ATA, Foster JJ, Baird EJ, Strube-Bloss MF, Byrne MJ, el Jundi B (2019) Multimodal cue integration in the dung beetle compass. Proc Natl Acad Sci USA 116:14248–14253. https://doi.org/10.1073/pnas.1904308116

Article  CAS  Google Scholar 

de Oliveira JF, Wajnberg E, Esquivel DMDS et al (2010) Ant antennae: are they sites for magnetoreception? J R Soc Interface 7:143–152. https://doi.org/10.1098/rsif.2009.0102

Article  CAS  Google Scholar 

Deeti S, Cheng K (2021) Learning walks in an Australian desert ant, Melophorus bagoti. J Exp Biol. https://doi.org/10.1242/jeb.242177

Article  Google Scholar 

Dreyer D, Frost B, Mouritsen H, Günther A, Green K, Whitehouse M, Johnsen S, Heinze S, Warrant E (2018) The earth’s magnetic field and visual landmarks steer migratory flight behavior in the nocturnal Australian bogong moth. Curr Biol 28:2160-2166.e5. https://doi.org/10.1016/j.cub.2018.05.030

Article  CAS  Google Scholar 

Ehmer B, Gronenberg W (2002) Segregation of visual input to the mushroom bodies in the honeybee (Apis mellifera). J Comp Neurol 451:362–373. https://doi.org/10.1002/cne.10355

Article  Google Scholar 

el Jundi B, Pfeiffer K, Heinze S, Homberg U (2014) Integration of polarization and chromatic cues in the insect sky compass. J Comp Physiol 200:575–589. https://doi.org/10.1007/s00359-014-0890-6

Article  Google Scholar 

el Jundi B, Foster JJ, Khaldy L, Byrne MJ, Dacke M, Baird E (2016) A snapshot-based mechanism for celestial orientation. Curr Biol 26:1456–1462. https://doi.org/10.1016/j.cub.2016.03.030

Article  CAS  Google Scholar 

Falibene A, Roces F, Rössler W (2015) Long-term avoidance memory formation is associated with a transient increase in mushroom body synaptic complexes in leaf-cutting ants. Front Behav Neurosci 9:84. https://doi.org/10.3389/fnbeh.2015.00084

Article  Google Scholar 

Farris SM, Schulmeister S (2011) Parasitoidism, not sociality, is associated with the evolution of elaborate mushroom bodies in the brains of hymenopteran insects. Proc Biol Sci 278:940–951. https://doi.org/10.1098/rspb.2010.2161

Article  Google Scholar 

Fleischmann PN, Christian M, Müller VL, Rössler W, Wehner R (2016) Ontogeny of learning walks and the acquisition of landmark information in desert ants, Cataglyphis fortis. J Exp Biol 219:3137–3145. https://doi.org/10.1242/jeb.140459

Article  Google Scholar 

Fleischmann PN, Grob R, Wehner R, Rössler W (2017) Species-specific differences in the fine structure of learning walk elements in Cataglyphis ants. J Exp Biol 220:2426–2435. https://doi.org/10.1242/jeb.158147

Article  Google Scholar 

Fleischmann PN, Rössler W, Wehner R (2018a) Early foraging life: spatial and temporal aspects of landmark learning in the ant Cataglyphis noda. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 204:579–592. https://doi.org/10.1007/s00359-018-1260-6

Article  Google Scholar 

Fleischmann PN, Grob R, Müller VL, Wehner R, Rössler W (2018b) The geomagnetic field is a compass cue in Cataglyphis ant navigation. Curr Biol 28:1440-1444.e2. https://doi.org/10.1016/j.cub.2018.03.043

Article  CAS  Google Scholar 

Fleischmann PN, Grob R, Rössler W (2020a) Kompass im Kopf. Biol Unserer Zeit. https://doi.org/10.1002/biuz.202070201

Article  Google Scholar 

Fleischmann PN, Grob R, Rössler W (2020b) Magnetoreception in Hymenoptera: importance for navigation. Anim Cogn 23:1051–1061. https://doi.org/10.1007/s10071-020-01431-x

Article  Google Scholar 

Fleischmann PN, Grob R, Rössler W (2022) Magnetosensation during re-learning walks in desert ants (Cataglyphis nodus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 208:125–133. https://doi.org/10.1007/s00359-021-01511-4

Article  Google Scholar 

Freas CA, Fleischmann PN, Cheng K (2019) Experimental ethology of learning in desert ants: becoming expert navigators. Behav Process 158:181–191. https://doi.org/10.1016/j.beproc.2018.12.001

Article  Google Scholar 

Graham P, Philippides A, Baddeley B (2010) Animal cognition: multi-modal interactions in ant learning. Curr Biol 20:R639–R640. https://doi.org/10.1016/j.cub.2010.06.018

Article  CAS  Google Scholar 

Grob R, Fleischmann PN, Grübel K, Wehner R, Rössler W (2017) The role of celestial compass information in Cataglyphis ants during learning walks and for neuroplasticity in the central complex and mushroom bodies. Front Behav Neurosci 11:226. https://doi.org/10.3389/fnbeh.2017.00226

Article  CAS  Google Scholar 

Grob R, Fleischmann PN, Rössler W (2019) Learning to navigate—how desert ants calibrate their compass systems. Neuroforum 25:109–120. https://doi.org/10.1515/nf-2018-0011

Article  Google Scholar 

Grob R, Tritscher C, Grübel K, Stigloher C, Groh C, Fleischmann PN, Rössler W (2021a) Johnston’s organ and its central projections in Cataglyphis desert ants. J Comp Neurol 529:2138–2155. https://doi.org/10.1002/cne.25077

Article  Google Scholar 

Grob R, Heinig N, Grübel K, Rössler W, Fleischmann PN (2021b) Sex-specific and caste-specific brain adaptations related to spatial orientation in Cataglyphis ants. J Comp Neurol 529:3882–3892. https://doi.org/10.1002/cne.25221

Article  Google Scholar 

Grob R, el Jundi B, Fleischmann PN (2021c) Towards a common terminology for arthropod spatial orientation. Ethol Ecol Evol 33:338–358. https://doi.org/10.1080/03949370.2021.1905075

Article  Google Scholar 

Grob R, Holland Cunz O, Grübel K, Pfeiffer K, Rössler W, Fleischmann PN (2022) Rotation of skylight polarization during learning walks is necessary to trigger neuronal plasticity in Cataglyphis ants. Proc Biol Sci 289:20212499. https://doi.org/10.1098/rspb.2021.2499

Article  CAS  Google Scholar 

Groh C, Lu Z, Meinertzhagen IA, Rössler W (2012) Age-related plasticity in the synaptic ultrastructure of neurons in the mushroom body calyx of the adult honeybee Apis mellifera. J Comp Neurol 520:3509–3527. https://doi.org/10.1002/cne.23102

Article  Google Scholar 

Gronenberg W (2008) Structure and function of ant (Hymenoptera: Formicidae) brains: strength in numbers. Myrmecol News 11:25–36

Google Scholar 

Gronenberg W, Hölldobler B (1999) Morphologic representation of visual and antennal information in the ant brain. J Comp Neurol 412:229–240. https://doi.org/10.1002/(SICI)1096-9861(19990920)412:2%3c229:AID-CNE4%3e3.0.CO;2-E

Article  CAS  Google Scholar 

Grünewald B (1999) Physiological properties and response modulations of mushroom body feedback neuronsduring olfactory learning in the honeybee, Apis mellifera. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 185:565–576. https://doi.org/10.1007/s003590050417

Article  Google Scholar 

Habenstein J, Amini E, Grübel K, el Jundi B, Rössler W (2020) The brain of Cataglyphis ants: neuronal organization and visual projections. J Comp Neurol 528:3479–3506. https://doi.org/10.1002/cne.24934

Article  Google Scholar 

Habenstein J, Thamm M, Rössler W (2021a) Neuropeptides as potential modulators of behavioral transitions in the ant Cataglyphis nodus. J Comp Neurol 529:3155–3170. https://doi.org/10.1002/cne.25166

Article  CAS  Google Scholar 

Habenstein J, Schmitt F, Liessem S, Ly A, Trede D, Wegener C, Predel R, Rössler W, Neupert S (2021b) Transcriptomic, peptidomic, and mass spectrometry imaging analysis of the brain in the ant Cataglyphis nodus. J Neurochem 158:391–412. https://doi.org/10.1111/jnc.15346

Article  CAS  Google Scholar 

Haehnel M, Menzel R (2012) Long-term memory and response generalization in mushroom body extrinsic neurons in the honeybee Apis mellifera. J Exp Biol 215:559–565. https://doi.org/10.1242/jeb.059626

Article  Google Scholar 

Heinze S, Homberg U (2007) Maplike representation of celestial E-vector orientations in the brain of an insect. Science 315:995–997. https://doi.org/10.1126/science.1135531

Article  CAS  Google Scholar 

Heinze S, Reppert SM (2011) Sun compass integration of skylight cues in migratory monarch butterflies. Neuron 69:345–358. https://doi.org/10.1016/j.neuron.2010.12.025

Article  CAS  Google Scholar 

Heinze S, el Jundi B, Berg BG, Homberg U, Menzel R, Pfeiffer K, Hensgen R, Zittrell F, Dacke M, Warrant E, Pfuhl G, Rybak J, Tedore K (2021) A unified platform to manage, share, and archive morphological and functional data in insect neuroscience. Elife. https://doi.org/10.7554/eLife.653

留言 (0)

沒有登入
gif