Crosstalk between MAPKs and GSH under stress: A critical review

Asai T, Tena G, Plotnikova J, et al. 2002 MAP kinase signalling cascade in Arabidopsis innate immunity. Nature 415 977–983

Article  Google Scholar 

Ball L, Accotto GP, Bechtold U, et al. 2004 Evidence for a direct link between glutathione biosynthesis and stress defense gene expression in Arabidopsis. Plant Cell 16 2448–2462

Article  Google Scholar 

Bergmann L and Rennenberg H 1993 Glutathione metabolism in plants; in Sulfur nutrition and sulfur assimilation in higher plants (eds) LJ De Kok, I Stulen, H Rennenberg, C Brunold and WE Rauser (The Hague, the Netherlands: SPB Academic Publishers) pp 109–123

Boller T and Felix G 2009 A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60 379–406

Article  Google Scholar 

Boro P, Sultana A, Mandal K and Chattopadhyay S 2022 Interplay between glutathione and mitogen-activated protein kinase 3 via transcription factor WRKY40 under combined osmotic and cold stress in Arabidopsis. J. Plant Physiol. 271 153664

Article  Google Scholar 

Cairns NG, Pasternak M, Wachter A, Cobbett CS and Meyer AJ 2006 Maturation of Arabidopsis seeds is dependent on glutathione biosynthesis within the embryo. Plant Physiol. 141 446–455

Article  Google Scholar 

Clemente-Moreno MJ, Diaz-Vivancos P, Barba-Espín G and Hernández JA 2010 Benzothiadiazole and L-2-oxothiazolidine-4-carboxylic acid reduced the severity of Sharka symptoms in pea leaves: effect on the antioxidative metabolism at subcellular level. Plant Biol. 12 88–97

Article  Google Scholar 

Dai C and Gao A 2016 Identification of wheat-Agropyron cristatum 6P translocation lines and localization of 6P-specific EST markers. Euphytica 208 265–275

Article  Google Scholar 

Dalton TP, Shertzer HG and Puga A 1999 Regulation of gene expression by reactive oxygen. Annu. Rev. Pharmacol. Toxicol. 39 67–101

Article  Google Scholar 

Dixon RA and Lamb CJ 1990 Molecular communication in interactions between plants and microbial pathogens. Annu. Rev. Plant Physiol. Plant. Mol. Biol. 41 339–367

Article  Google Scholar 

Geu-Flores F, Møldrup ME, Böttcher C, et al. 2011 Cytosolic γ-glutamyl peptidases process glutathione conjugates in the biosynthesis of glucosinolates and camalexin in Arabidopsis. Plant Cell 23 2456–2469

Article  Google Scholar 

Ghanta S, Bhattacharyya D, Sinha R, Banerjee A and Chattopadhyay S 2011 Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. Planta 233 895–910

Article  Google Scholar 

Glazebrook J and Ausubel FM 1994 Isolation of phytoalexin-deficient mutants of Arabidopsis thaliana and characterization of their interactions with bacterial pathogens. Proc. Natl. Acad. Sci. USA 91 8955–8959

Article  Google Scholar 

Glazebrook J, Zook M, Mert F, et al. 1997 Phytoalexin-deficient mutants of Arabidopsis reveal that PAD4 encodes a regulatory factor and that four PAD genes contribute to downy mildew resistance. Genetics 146 381–392

Article  Google Scholar 

González A, Laporte D and Moenne A 2021 Cadmium accumulation involves synthesis of glutathione and phytochelatins, and activation of CDPK, CaMK, CBLPK, and MAPK signaling pathways in Ulva compressa. Front. Plant Sci. 12 669096

Article  Google Scholar 

Grill D, Tausz M and De Kok LJ 2001 Significance of glutathione in plant adaptation to the environment; in Handbook of plant ecophysiology (ed) LJ De Kok (Dordrecht: Kluwer)

Gullner G, Komives T, Király L and Schröder P 2018 Glutathione S-transferase enzymes in plant-pathogen interactions. Front. Plant Sci. 9 1836

Article  Google Scholar 

Hammerschmidt R 1999 Phytoalexins: what have we learned after 60 years? Annu. Rev. Phytopathol. 37 285–306

Article  Google Scholar 

Ichimura K, Shinozaki K, Tena G, et al. 2002 Mitogen-activated protein kinase cascades in plants: a new nomenclature. Trends Plant Sci. 7 301–308

Article  Google Scholar 

Jonak C, Ökrész L, Bögre L and Hirt H 2002 Complexity, cross talk and integration of plant MAP kinase signalling. Curr. Opin. Plant Biol. 5 415–424

Article  Google Scholar 

Kang G, Li G and Guo T 2014 Molecular mechanism of salicylic acid-induced abiotic stress tolerance in higher plants. Acta. Physiol. Plant. 36 2287–2297

Article  Google Scholar 

Knight H and Knight MR 2001 Abiotic stress signalling pathways: specificity and crosstalk. Trends Plant Sci. 6 262–267

Article  Google Scholar 

Komis G, Šamajová O, Ovečka M and Šamaj J 2018 Cell and developmental biology of plant mitogen-activated protein kinases. Annu. Rev. Plant Biol. 69 237–265

Article  Google Scholar 

Lamb CJ, Lawton MA, Dron M and Dixon RA 1989 Signals and transduction mechanisms for activation of plant defenses against microbial attack. Cell 56 215–224

Article  Google Scholar 

Laporte D, González A and Moenne A 2020 Copper-induced activation of MAPKs, CDPKs and CaMKs triggers activation of hexokinase and inhibition of pyruvate kinase leading to increased synthesis of ASC, GSH and NADPH in Ulva compressa. Front. Plant Sci. 11 990

Article  Google Scholar 

Lin C and Chen S 2018 New functions of an old kinase MPK4 in guard cells. Plant Signal. Behav. 13 e1477908

Article  Google Scholar 

Liu Y, Zhang S and Klessig DF 2000 Molecular cloning and characterization of a tobacco MAP kinase kinase that interacts with SIPK. Mol. Plant Microbe Interact. 13 118–124

Article  Google Scholar 

Liu XM, Kim KE, Kim KC, et al. 2010 Cadmium activates Arabidopsis MPK3 and MPK6 via accumulation of reactive oxygen species. Phytochemistry 71 614–618

Article  Google Scholar 

Mahmood Q, Ahmad R, Kwak SS, Rashid A and Anjum NA 2010 Ascorbate and glutathione: protectors of plants in oxidative stress; in Ascorbate-glutathione pathway and stress tolerance in plants (eds) NA Anjum, MT Chan and S Umar (Springer: Dordrecht) pp 209–229

Matern S, Peskan-Berghoefer T, Gromes R, Kiesel RV and Rausch T 2015 Imposed glutathione-mediated redox switch modulates the tobacco wound-induced protein kinase and salicylic acid-induced protein kinase activation state and impacts on defence against Pseudomonas syringae. J. Exp. Bot. 66 1935–1950

Article  Google Scholar 

Meister A 1988 Glutathione metabolism and its selective modification. J. Biol. Chem. 263 17205–17208

Article  Google Scholar 

Mittler R, Vanderauwera S, Gollery M and Van Breusegem F 2004 Reactive oxygen gene network of plants. Trends Plant Sci. 9 490–498

Article  Google Scholar 

Morris PC 2001 MAP kinase signal transduction pathways in plants. New Phytol. 151 67–89

Article  Google Scholar 

Mou Z, Fan W and Dong X 2003 Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113 935–944

Article  Google Scholar 

Noctor G, Queval G, Mhamdi A, Chaouch S and Foyer CH 2011 Glutathione; in The Arabidopsis book (eds) C Somerville and E Meyerowitz (American Society of Plant Biologists: Rockville) pp 1–32

Parisy V, Poinssot B, Owsianowski L, et al. 2007 Identification of PAD2 as a γ-glutamylcysteine synthetase highlights the importance of glutathione in disease resistance of Arabidopsis. Plant J. 49 159–172

Article  Google Scholar 

Petersen M, Brodersen P, Naested H, et al. 2000 Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell 103 1111–1120

Article  Google Scholar 

Rasmussen MW, Roux M, Petersen M and Mundy J 2012 MAP kinase cascades in Arabidopsis innate immunity. Front. Plant Sci. 3 169

Article  Google Scholar 

Ren D, Yang H and Zhang S 2002 Cell death mediated by mitogen-activated protein kinase pathway is associated with the generation of hydrogen peroxide in Arabidopsis. J. Biol. Chem. 277 559–565

Article  Google Scholar 

Ren D, Liu Y, Yang KY, Han L, Mao G, Glazebrook J and Zhang S 2008 A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc. Natl. Acad. Sci. 105 5638–5643

Article  Google Scholar 

Rodriguez MC, Petersen M and Mundy J 2010 Mitogen-activated protein kinase signaling in plants. Annu. Rev. Plant Biol. 61 621–649

Rodríguez-Rojas F, Celis-Plá PS, Méndez L, et al. 2019 MAPK pathway under chronic copper excess in green macroalgae (Chlorophyta): Involvement in the regulation of detoxification mechanisms. Int. J. Mol. Sci. 20 4546

Article  Google Scholar 

Schenke D, Bottcher C and Scheel D 2011 Crosstalk between abiotic ultraviolet-B stress and biotic (flg22) stress signalling in Arabidopsis prevents flavonol accumulation in favor of pathogen defence compound production. Plant Cell Environ. 34 1849–1864

Article  Google Scholar 

Shan C and Dong N 2017 Nitric oxide donor SNP regulates the ascorbate and glutathione metabolism in Agropyron cristatum leaves through MEK1/2. Biol. Plant. 61 774–778

Article  Google Scholar 

Shan C and Sun H 2018 Jasmonic acid-induced NO activates MEK1/2 in regulating the metabolism of ascorbate and glutathione in maize leaves. Protoplasma 255 977–983

Article  Google Scholar 

Shan C, Liang Z, Sun Y, Hao W and Han R 2011 The protein kinase MEK1/2 participates in the regulation of ascorbate and glutathione content by jasmonic acid in Agropyron cristatum leaves. J. Plant Physiol. 168 514–518

Article  Google Scholar 

Sinha R, Kumar D, Datta R, et al. 2015 Integrated transcriptomic and proteomic analysis of Arabidopsis thaliana exposed to glutathione unravels its role in plant defense. Plant Cell Tissue Organ Cult. 120 975–988

Article  Google Scholar 

Su T, Xu J, Li Y, et al. 2011 Glutathione-indole-3-acetonitrile is required for camalexin biosynthesis in Arabidopsis thaliana. Plant Cell 23 364–380

Article  Google Scholar 

Sytar O, Kumar A, Latowski D, et al. 2013 Heavy metal-induced oxidative damage, defense reactions, and detoxification mechanisms in plants. Acta Physiol. Plant. 35 985–999

Article  Google Scholar 

Taj G, Agarwal P, Grant M and Kumar A 2010 MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal. Behav. 5 1370–1378

Tena G, Asai T, Chiu WL and Sheen J 2001 Plant mitogen-activated protein kinase signaling cascades. Curr. Opin. Plant Biol. 4 392–400

Article  Google Scholar 

Thomma BP, Nelissen I, Eggermont K and Broekaert WF 1999 Deficiency in phytoalexin production causes enhanced susceptibility of Arabidopsis thaliana to the fungus Alternaria brassicicola. Plant J. 19 163–171

Article  Google Scholar 

Tsuji J, Jackson EP, Gage DA, Hammerschmidt R and Somerville SC 1992 Phytoalexin accumulation in Arabidopsis thaliana during the hypersensitive reaction to Pseudomonas syringae pv syringae. Plant Physiol. 98 1304–1309

Article  Google Scholar 

Tsuji J, Zook M, Somerville SC, Last RL and Hammerschmidt R 1993 Evidence that tryptophan is not a direct biosynthetic intermediate of camalexin in Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 43 221–229

Article  Google Scholar 

Wang G, Lovato A, Polverari A, et al. 2014 Genome-wide identification and analysis of mitogen activated protein kinase kinase kinase gene family in grapevine (Vitis vinifera). BMC Plant Biol. 14 219

Article 

留言 (0)

沒有登入
gif