Protein as evolvable functionally constrained amorphous matter

Ahmed S, Manjunath K, Chattopadhyay G and Varadarajan R 2022 Identification of stabilizing point mutations through mutagenesis of destabilized protein libraries. J. Biol. Chem. 298 101785

Article  CAS  Google Scholar 

Anfinsen CB 1973 Principles that govern the folding of protein chains. Science 181 223–230

Article  CAS  Google Scholar 

Babu Y, Bugg CE and Cook WJ 1988 Structure of calmodulin refined at 2.2 are solution. J. Mol. Biol. 204 191–204

Article  CAS  Google Scholar 

Banerjee A and Jost J 2008 On the spectrum of the normalized graph laplacian. Lin. Algebra Appl. 428 3015–3022

Article  Google Scholar 

Barbot A, Lerbinger M, Lemaˆıtre A, Vandembroucq D and Patinet S 2020 Rejuvenation and shear banding in model amorphous solids. Phys. Rev. E 101 033001

Article  CAS  Google Scholar 

Cates ME, Wittmer JP, Bouchaud J-P and Claudin P 1998 Jamming, force chains, and fragile matter. Phys. Rev. Lett. 81 1841–1844

Article  CAS  Google Scholar 

Chakraborty D, Mugnai ML and Thirumalai D 2021 On the emergence of orientational order in folded proteins with implications for allostery. Symmetry 13 770

Article  CAS  Google Scholar 

Changeux JP 2012 Allostery and the Monod-Wyman-Changeux model after 50 years. Annu. Rev. Biophys. 41 103–133

Article  CAS  Google Scholar 

Cherezov V, Rosenbaum DM, Hanson MA, et al. 2007 High Resolution crystal structure of an engineered human 2-adrenergic G protein-coupled receptor. Science 318 1258–1265

Article  CAS  Google Scholar 

Chu J-W and Voth GA 2007 Coarse-grained free energy functions for studying protein conformational changes: A double-well network model. Biophys. J. 93 3860–3871

Article  CAS  Google Scholar 

Csermely P, Palotai R and Nussinov R 2010 Induced fit, conformational selection and independent dynamic segments: an extended view of binding events. Trends Biochem. Sci. 35 539–546

Article  CAS  Google Scholar 

DiDonna BA and Lubensky TC 2005 Nonaffine correlations in random elastic media. Phys. Rev. E 72 066619

Article  CAS  Google Scholar 

Dutta S, Eckmann J-P, Libchaber A and Tlusty T 2018 Green function of correlated genes in a minimal mechanical model of protein evolution. Proc. Natl. Acad. Sci. USA 115 E4559–E4568

Article  CAS  Google Scholar 

Eckmann J-P, Rougemont J and Tlusty T 2019 Proteins: The physics of amorphous evolving matter. Rev. Mod. Phys. 91 031001

Article  CAS  Google Scholar 

Frauenfelder H, Sligar S and Wolynes P 1991 The energy landscapes and motions of proteins. Science 254 1598–1603

Article  CAS  Google Scholar 

Garel T, Orland H and Pitard E 1997 Protein Folding and Heteropolymers. in A P Young (ed) Spin Glasses and Random Fields, Series on Directions in Condensed Matter Physics vol. 12 (World Scientific) pp. 387–443

Halabi N, Rivoire O, Leibler S and Ranganathan R 2009 Protein sectors: Evolutionary units of three-dimensional structure. Cell 138 774–786

Article  CAS  Google Scholar 

Hexner D, Liu AJ and Nagel SR 2018 Role of local response in manipulating the elastic properties of disordered solids by bond removal. Soft Matter 14 312–318

Article  CAS  Google Scholar 

Hilger D, Masureel M and Kobilka BK 2018 Structure and dynamics of GPCR signaling complexes. Nat. Struct. Mol. Biol. 25 4–12

Article  CAS  Google Scholar 

Iben IET, Braunstein D, Doster W, et al. 1989 Glassy behavior of a protein. Phys. Rev. Lett. 62 1916–1919

Jasnow D 1984 Critical phenomena at interfaces. Rep. Prog. Phys. 47 1059–1132

Article  CAS  Google Scholar 

Koonin EV, Wolf YI and Karev GP 2002 The structure of the protein universe and genome evolution. Nature 420 218–223

Article  CAS  Google Scholar 

Koshland DE, Nemethy G and Filmer D 1966 Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5 365–385

Article  CAS  Google Scholar 

Kuhlman B, Dantas G, Ireton GC, et al. 2003 Design of a novel globular protein fold with atomic-level accuracy. Science 302 1364–1368

Article  CAS  Google Scholar 

Law AB, Sapienza PJ, Zhang J, Zuo X and Petit CM 2017 Native state volume fluctuations in proteins as a mechanism for dynamic allostery. J. Am. Chem. Soc. 139 3599–3602

Article  CAS  Google Scholar 

Liang J and Dill KA 2001 Are proteins well-packed? Biophys. J. 81 751–766

Article  CAS  Google Scholar 

Lu S, He X, Yang Z, et al. 2021 Activation pathway of a g protein-coupled receptor uncovers conformational intermediates as targets for allosteric drug design. Nat. Commun. 12 4721

Article  CAS  Google Scholar 

Maragakis P and Karplus M 2005 Large amplitude conformational change in proteins explored with a plastic network model: Adenylate kinase. J. Mol. Biol. 352 807–822

Article  CAS  Google Scholar 

Milo R and Phillips R 2015 Cell biology by the numbers (Garland Science)

Monod J, Wyman J and Changeux J-P 1965 On the nature of allosteric transitions: A plausible model. J. Mol. Biol. 12 88–118

Article  CAS  Google Scholar 

M¨uller C, Schlauderer G, Reinstein J and Schulz G, 1996 Adenylate kinase motions during catalysis: an energetic counterweight balancing substrate binding. Structure 4 147–156

Article  Google Scholar 

M¨uller CW and Schulz GE, 1992 Structure of the complex between adenylate kinase from Escherichia coli and the inhibitor ap5a refined at 1.9 are solution: A model for acatalytic transition state. J. Mol. Biol. 224 159–177

Article  Google Scholar 

Osawa M, Tokumitsu H, Swindells M, et al. 1999 A novel target recognition revealed by calmodulin in complex with ca2+calmodulin-dependent kinase kinase. Nat. Struct. Biol. 6 819–824

Article  CAS  Google Scholar 

Rajasekaran N and Naganathan AN 2017 A self-consistent structural perturbation approach for determining the magnitude and extent of allosteric coupling in proteins. Biochem. J. 474 22

Article  Google Scholar 

Ramanoudjame G, Du M, Mankiewicz KA and Jayaraman V 2006 Allosteric mechanism in ampa receptors: A fret-based investigation of conformational changes. Proc. Natl. Acad. Sci. USA 103 10473–10478

Article  CAS  Google Scholar 

Reynolds K, Mclaughlin R and Ranganathan R 2011 Hot spots for allosteric regulation on protein surfaces. Cell 147 1564–1575

Article  CAS  Google Scholar 

Rocks JW, Pashine N, Bischofberger I, et al. 2017 Designing allostery-inspired response in mechanical networks. Proc. Natl. Acad. Sci. USA 114 2520–2525

Article  CAS  Google Scholar 

Sartori P and Leibler S 2020 Lessons from equilibrium statistical physics regarding the assembly of protein complexes. Proc. Natl. Acad. Sci. USA 117 114–120

Article  CAS  Google Scholar 

Shiau AK, Harris SF, Southworth DR and Agard DA 2006 Structural analysis of E. coli hsp90 reveals dramatic nucleotide-dependent conformational rearrangements. Cell 127 329–340

Article  CAS  Google Scholar 

Smock RG, Rivoire O, Russ WP, et al. 2010 An interdomain sector mediating allostery in hsp70 molecular chaperones. Mol. Syst. Biol. 6 414

Article  Google Scholar 

Socci ND and Onuchic JN 1994 Folding kinetics of protein like heteropolymers. J. Chem. Phys. 101 1519–1528

Article  CAS  Google Scholar 

Stefan MI, Edelstein SJ and Nov`ere NL2008 An allosteric model of calmodulin explains differential activation of pp2b and camkii. Proc. Natl. Acad. Sci. USA 105 10768–10773

Stehle T and Schulz GE 1992 Refined structure of the complex between guanylate kinase and its substrate gmp at 2·0 are solution. J. Mol. Biol. 224 1127–1141

Article  CAS  Google Scholar 

Tlusty T, Libchaber A and Eckmann J-P 2017 Physical model of the genotype-to-phenotype map of proteins. Phys. Rev. X 7 021037

Google Scholar 

Tsai C-J, Ma B and Nussinov R 1999 Folding and binding cascades: Shifts in energy landscapes. Proc. Natl. Acad. Sci. USA 96 9970–9972

Article  CAS  Google Scholar 

Weis WI and Kobilka BK 2018 The molecular basis of G protein-coupled receptor activation. Annu. Rev. Biochem. 87 897–919

Article  CAS  Google Scholar 

Yan L, Ravasio R, Brito C and Wyart M 2017 Architecture and coevolution of allosteric materials. Proc. Natl. Acad. Sci. USA 114 2526–2531

Article  CAS  Google Scholar 

Yan L, Ravasio R, Brito C and Wyart M 2018 Principles for optimal cooperativity in allosteric materials. Biophys. J. 114 2787–2798

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif