Therapy sculpts the complex interplay between cancer and the immune system during tumour evolution

Jamal-Hanjani M, Wilson GA, McGranahan N, Birkbak NJ, Watkins TBK, Veeriah S, et al. Tracking the evolution of non-small-cell lung cancer. N Engl J Med. 2017;376(22):2109–21.

Article  CAS  Google Scholar 

Turajlic S, Xu H, Litchfield K, Rowan A, Horswell S, Chambers T, et al. Deterministic Evolutionary trajectories influence primary tumor growth: TRACERx renal. Cell. 2018;173(3):595–610.e11.

Article  CAS  Google Scholar 

Zhang AW, McPherson A, Milne K, Kroeger DR, Hamilton PT, Miranda A, et al. Interfaces of malignant and immunologic clonal dynamics in ovarian cancer [Internet]. Cell. 2018;173:1755–69.e22. Available from:. https://doi.org/10.1016/j.cell.2018.03.073.

Article  CAS  Google Scholar 

Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23–8.

Article  CAS  Google Scholar 

Nik-Zainal S, Van Loo P, Wedge DC, Alexandrov LB, Greenman CD, Lau KW, et al. The life history of 21 breast cancers [Internet]. Cell. 2012;149:994–1007. Available from:. https://doi.org/10.1016/j.cell.2012.04.023.

Article  CAS  Google Scholar 

Gerstung M, PCAWG Evolution & Heterogeneity Working Group, Jolly C, Leshchiner I, Dentro SC, Gonzalez S, et al. The evolutionary history of 2,658 cancers [Internet]. Nature. 2020;578:122–8. Available from:. https://doi.org/10.1038/s41586-019-1907-7.

Article  CAS  Google Scholar 

Christensen DS, Ahrenfeldt J, Sokač M, Kisistók J, Thomsen MK, Maretty L, et al. Treatment represents a key driver of metastatic cancer evolution. Cancer Res. 2022;82(16):2918–27.

Article  CAS  Google Scholar 

Blankenstein T, Coulie PG, Gilboa E, Jaffee EM. The determinants of tumour immunogenicity [Internet]. Nat Rev Cancer. 2012;12:307–13. Available from:. https://doi.org/10.1038/nrc3246.

Article  CAS  Google Scholar 

Huang X, Zhang G, Tang T, Liang T. Identification of tumor antigens and immune subtypes of pancreatic adenocarcinoma for mRNA vaccine development. Mol Cancer. 2021;20(1):44.

Article  CAS  Google Scholar 

Dubrot J, Du PP, Lane-Reticker SK, Kessler EA, Muscato AJ, Mehta A, et al. In vivo CRISPR screens reveal the landscape of immune evasion pathways across cancer. Nat Immunol. 2022; Available from. https://doi.org/10.1038/s41590-022-01315-x.

Garrido F, Schirrmacher V, Festenstein H. H–2-like specificities of foreign haplotypes appearing on a mouse sarcoma after vaccinia virus infection. Nature. 1976;259(5540):228–30.

Article  CAS  Google Scholar 

Pyke RM, Mellacheruvu D, Dea S, Abbott CW, McDaniel L, Bhave DP, et al. A machine learning algorithm with subclonal sensitivity reveals widespread pan-cancer human leukocyte antigen loss of heterozygosity. Nat Commun. 2022;13(1):1925.

Article  CAS  Google Scholar 

McGranahan N, Rosenthal R, Hiley CT, Rowan AJ, Watkins TBK, Wilson GA, et al. Allele-specific HLA loss and immune escape in lung cancer evolution. Cell. 2017;171(6):1259–71.e11.

Article  CAS  Google Scholar 

Martínez-Jiménez F, Priestley P, Shale C, Baber J, Rozemuller E, Cuppen E. Genetic immune escape landscape in primary and metastatic cancer [Internet]; 2022. Available from:. https://doi.org/10.1101/2022.02.23.481444.

Book  Google Scholar 

Sade-Feldman M, Jiao YJ, Chen JH, Rooney MS, Barzily-Rokni M, Eliane JP, et al. Resistance to checkpoint blockade therapy through inactivation of antigen presentation. Nat Commun. 2017;8(1):1136.

Article  Google Scholar 

Ozcan M, Janikovits J, von Knebel DM, Kloor M. Complex pattern of immune evasion in MSI colorectal cancer. Oncoimmunology. 2018;7(7):e1445453.

Article  Google Scholar 

Sers C, Kuner R, Falk CS, Lund P, Sueltmann H, Braun M, et al. Down-regulation of HLA Class I and NKG2D ligands through a concerted action of MAPK and DNA methyltransferases in colorectal cancer cells. Int J Cancer. 2009;125(7):1626–39.

Article  CAS  Google Scholar 

Zhou Y, Bastian IN, Long MD, Dow M, Li W, Liu T, et al. Activation of NF-κB and p300/CBP potentiates cancer chemoimmunotherapy through induction of MHC-I antigen presentation. Proc Natl Acad Sci U S A. 2021;118(8) Available from. https://doi.org/10.1073/pnas.2025840118.

Rosenthal R, The TRACERx consortium, Cadieux EL, Salgado R, Al Bakir M, Moore DA, et al. Neoantigen-directed immune escape in lung cancer evolution. Nature. 2019;567:479–85. Available from:. https://doi.org/10.1038/s41586-019-1032-7.

Article  CAS  Google Scholar 

Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer [Internet], vol. 348: Science; 2015. p. 124–8. Available from:. https://doi.org/10.1126/science.aaa1348.

Book  Google Scholar 

McGranahan N, Furness AJS, Rosenthal R, Ramskov S, Lyngaa R, Saini SK, et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune checkpoint blockade. Science. 2016;351(6280):1463–9.

Article  CAS  Google Scholar 

Litchfield K, Reading JL, Puttick C, Thakkar K, Abbosh C, Bentham R, et al. Meta-analysis of tumor- and T cell-intrinsic mechanisms of sensitization to checkpoint inhibition [Internet]. Cell. 2021;184:596–614.e14. Available from:. https://doi.org/10.1016/j.cell.2021.01.002.

Article  CAS  Google Scholar 

Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Tian Ng AW, Wu Y, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94–101.

Article  CAS  Google Scholar 

Chalmers ZR, Connelly CF, Fabrizio D, Gay L, Ali SM, Ennis R, et al. Analysis of 100,000 human cancer genomes reveals the landscape of tumor mutational burden. Genome Med. 2017;9(1):34.

Article  Google Scholar 

Sabarinathan R, Pich O, Martincorena I, Rubio-Perez C, Juul M, Wala J, et al. The whole-genome panorama of cancer drivers [Internet]. bioRxiv. 2017:190330 [cited 2022 Oct 7]. Available from: https://www.biorxiv.org/content/biorxiv/early/2017/12/23/190330.

Guo Q, Lakatos E, Bakir IA, Curtius K, Graham TA, Mustonen V. The mutational signatures of formalin fixation on the human genome. Nat Commun. 2022;13(1):4487.

Article  CAS  Google Scholar 

Tamborero D, Rubio-Perez C, Muiños F, Sabarinathan R, Piulats JM, Muntasell A, et al. A pan-cancer landscape of interactions between solid tumors and infiltrating immune cell populations. Clin Cancer Res. 2018;24(15):3717–28.

Article  CAS  Google Scholar 

Santegoets SJ, van Ham VJ, Ehsan I, Charoentong P, Duurland CL, van Unen V, et al. The anatomical location shapes the immune infiltrate in tumors of same etiology and affects survival. Clin Cancer Res. 2019;25(1):240–52.

Article  CAS  Google Scholar 

Cubillos-Ruiz JR, Mohamed E, Rodriguez PC. Unfolding anti-tumor immunity: ER stress responses sculpt tolerogenic myeloid cells in cancer. J Immunother Cancer. 2017;5:5.

Article  Google Scholar 

Bakhoum SF, Ngo B, Laughney AM, Cavallo JA, Murphy CJ, Ly P, et al. Chromosomal instability drives metastasis through a cytosolic DNA response. Nature. 2018;553(7689):467–72.

Article  CAS  Google Scholar 

Ebot EM, Duncan DL, Tolba K, Fabrizio D, Frampton GM, Comment LA, et al. Deletions on 9p21 are associated with worse outcomes after anti-PD-1/PD-L1 monotherapy but not chemoimmunotherapy. NPJ Precis Oncol. 2022;6(1):44.

Article  CAS  Google Scholar 

William WN Jr, Zhao X, Bianchi JJ, Lin HY, Cheng P, Lee JJ, et al. Immune evasion in HPV- head and neck precancer-cancer transition is driven by an aneuploid switch involving chromosome 9p loss. Proc Natl Acad Sci U S A [Internet]. 2021;118(19) Available from:. https://doi.org/10.1073/pnas.2022655118.

Barriga FM, Tsanov KM, Ho YJ, Sohail N, Zhang A, Baslan T, et al. Chromosome 9p21.3 coordinates cell intrinsic and extrinsic tumor suppression [Internet]. bioRxiv. 2022:2022.08.22.504793 [cited 2022 Oct 10]. Available from: https://www.biorxiv.org/content/early/2022/08/23/2022.08.22.504793.

Liu VC, Wong LY, Jang T, Shah AH, Park I, Yang X, et al. Tumor evasion of the immune system by converting CD4 CD25−T cells into CD4 CD25 T regulatory cells: role of tumor-derived TGF-β [Internet]. J Immunol. 2007;178:2883–92. Available from. https://doi.org/10.4049/jimmunol.178.5.2883.

Article  CAS  Google Scholar 

Tan MCB, Goedegebuure PS, Belt BA, Flaherty B, Sankpal N, Gillanders WE, et al. Disruption of CCR5-dependent homing of regulatory T cells inhibits tumor growth in a murine model of pancreatic cancer [Internet]. J Immunol. 2009;182:1746–55. Available from:. https://doi.org/10.4049/jimmunol.182.3.1746.

Article  CAS  Google Scholar 

Zhao X, Ding L, Lu Z, Huang X, Jing Y, Yang Y, et al. Diminished CD68 cancer-associated fibroblast subset induces regulatory T-cell (Treg) infiltration and predicts poor prognosis of oral squamous cell carcinoma patients [Internet]. Am J Pathol. 2020;190:886–99. Available from:. https://doi.org/10.1016/j.ajpath.2019.12.007.

Article  CAS  Google Scholar 

Costa A, Kieffer Y, Scholer-Dahirel A, Pelon F, Bourachot B, Cardon M, et al. Fibroblast heterogeneity and immunosuppressive environment in human breast cancer [Internet]. Cancer Cell. 2018;33:463–79.e10. Available from. https://doi.org/10.1016/j.ccell.2018.01.011.

Article  CAS  Google Scholar 

Huang H, Wang Z, Zhang Y, Pradhan RN, Ganguly D, Chandra R, et al. Mesothelial cell-derived antigen-presenting cancer-associated fibroblasts induce expansion of regulatory T cells in pancreatic cancer. Cancer Cell. 2022;40(6):656–73.e7.

Article  CAS  Google Scholar 

Failmezger H, Muralidhar S, Rullan A, de Andrea CE, Sahai E, Yuan Y. Topological tumor graphs: a graph-based spatial model to infer stromal recruitment for immunosuppression in melanoma histology [Internet]. Cancer Res. 2020;80:1199–209. Available from:. https://doi.org/10.1158/0008-5472.can-19-2268.

Article  CAS  Google Scholar 

AbdulJabbar K, TRACERx Consortium, Ahmed Raza SE, Rosenthal R, Jamal-Hanjani M, Veeriah S, et al. Geospatial immune variability illuminates differential evolution of lung adenocarcinoma [Internet]. Nat Med. 2020;26:1054–62. Available from:. https://doi.org/10.1038/s41591-020-0900-x.

Article  CAS  Google Scholar 

Camus M, Tosolini M, Mlecnik B, Pagès F, Kirilovsky A, Berger A, et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res. 2009;69(6):2685–93.

Article  CAS  Google Scholar 

Watermann C, Pasternack H, Idel C, Ribbat-Idel J, Brägelmann J, Kuppler P, et al. Recurrent HNSCC harbor an immunosuppressive tumor immune microenvironment suggesting successful tumor immune evasion. Clin Cancer Res. 2021;27(2):632–44.

Article  CAS  Google Scholar 

Sun Y, Wu L, Zhong Y, Zhou K, Hou Y, Wang Z, et al. Single-cell landscape of the ecosystem in early-relapse hepatocellular carcinoma. Cell. 2021;184(2):404–21.e16.

Article  CAS  Google Scholar 

Sridharan V, Margalit DN, Lynch SA, Severgnini M, Zhou J, Chau NG, et al. Definitive chemoradiation alters the immunologic landscape and immune checkpoints in head and neck cancer. Br J Cancer. 2016;115(2):252–60.

Article  CAS  Google Scholar 

Wilkins A, Fontana E, Nyamundanda G, Ragulan C, Patil Y, Mansfield D, et al. Differential and longitudinal immune gene patterns associated with reprogrammed microenvironment and viral mimicry in response to neoadjuvant radiotherapy in rectal cancer [Internet]. J Immuno Ther Cancer. 2021;9:e001717. Available from. https://doi.org/10.1136/jitc-20

留言 (0)

沒有登入
gif