Osteosarcoma

Mirabello, L., Troisi, R. J. & Savage, S. A. Osteosarcoma incidence and survival rates from 1973 to 2004: data from the surveillance, epidemiology, and end results program. Cancer 115, 1531–1543 (2009).

Article  Google Scholar 

Bielack, S. S. et al. Prognostic factors in high-grade osteosarcoma of the extremities or trunk: an analysis of 1702 patients treated on neoadjuvant cooperative osteosarcoma study group protocols. J. Clin. Oncol. 20, 776–790 (2002). A study that affirms tumour site and size, primary metastases, response to chemotherapy, and surgical remission as independent prognostic factors in patients with osteosarcoma.

Article  Google Scholar 

Klein, M. J. & Siegal, G. P. Osteosarcoma: anatomic and histologic variants. Am. J. Clin. Pathol. 125, 555–581 (2006).

Article  Google Scholar 

Piperdi, S. et al. β-Catenin does not confer tumorigenicity when introduced into partially transformed human mesenchymal stem cells. Sarcoma 2012, 164803 (2012).

Article  Google Scholar 

Bertoni, F. & Bacchini, P. Classification of bone tumors. Eur. J. Radiol. 27 (Suppl. 1), S74–S76 (1998).

Article  Google Scholar 

Kager, L. et al. Primary metastatic osteosarcoma: presentation and outcome of patients treated on neoadjuvant Cooperative Osteosarcoma Study Group protocols. J. Clin. Oncol. 21, 2011–2018 (2003).

Article  Google Scholar 

Isakoff, M. S., Bielack, S. S., Meltzer, P. & Gorlick, R. Osteosarcoma: current treatment and a collaborative pathway to success. J. Clin. Oncol. 33, 3029–3035 (2015).

Article  CAS  Google Scholar 

Smith, M. A. et al. Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J. Clin. Oncol. 28, 2625–2634 (2010).

Article  Google Scholar 

Gill, J. & Gorlick, R. Advancing therapy for osteosarcoma. Nat. Rev. Clin. Oncol. 18, 609–624 (2021).

Article  Google Scholar 

Mirabello, L., Troisi, R. J. & Savage, S. A. International osteosarcoma incidence patterns in children and adolescents, middle ages and elderly persons. Int. J. Cancer 125, 229–234 (2009).

Article  CAS  Google Scholar 

Parkin, D. M., Stiller, C. A., Draper, G. J. & Bieber, C. The international incidence of childhood cancer. Int. J. Cancer 42, 511–520 (1988).

Article  CAS  Google Scholar 

Mirabello, L. et al. Frequency of pathogenic germline variants in cancer-susceptibility genes in patients with osteosarcoma. JAMA Oncol. 6, 724–734 (2020). This study demonstrates a high frequency of potentially pathogenic germline mutations in patients with osteosarcoma, supporting the role of germline genetic testing.

Article  Google Scholar 

Glass, A. G. & Fraumeni, J. F. Jr. Epidemiology of bone cancer in children. J. Natl Cancer Inst. 44, 187–199 (1970).

CAS  Google Scholar 

Czerniak, B. Dorfman and Czerniak’s Bone Tumors E-Book (Elsevier Health Sciences, 2015).

Brown, H. K., Schiavone, K., Gouin, F., Heymann, M.-F. & Heymann, D. Biology of bone sarcomas and new therapeutic developments. Calcif. Tissue Int. 102, 174–195 (2018).

Article  CAS  Google Scholar 

Cole, S., Gianferante, D. M., Zhu, B. & Mirabello, L. Osteosarcoma: a surveillance, epidemiology, and end results program‐based analysis from 1975 to 2017. Cancer 128, 2107–2118 (2022).

Article  Google Scholar 

Ilcisin, L. A. S. et al. Poverty, race, ethnicity, and survival among U.S. children with non-metastatic osteosarcoma treated on EURAMOS-1: a report from the Children’s Oncology Group. J. Clin. Oncol. 40, 10004 (2022).

Article  Google Scholar 

Zhang, J. et al. Germline mutations in predisposition genes in pediatric cancer. N. Engl. J. Med. 373, 2336–2346 (2015).

Article  CAS  Google Scholar 

Vlachos, A., Rosenberg, P. S., Atsidaftos, E., Alter, B. P. & Lipton, J. M. Incidence of neoplasia in Diamond Blackfan anemia: a report from the Diamond Blackfan Anemia Registry. Blood 119, 3815–3819 (2012).

Article  CAS  Google Scholar 

Wang, L. L. et al. Association between osteosarcoma and deleterious mutations in the RECQL4 gene in Rothmund-Thomson syndrome. J. Natl Cancer Inst. 95, 669–674 (2003).

Article  CAS  Google Scholar 

Lu, L., Jin, W. & Wang, L. L. RECQ DNA helicases and osteosarcoma. Adv. Exp. Med. Biol. 1258, 37–54 (2020).

Article  CAS  Google Scholar 

Hameed, M. & Mandelker, D. Tumor syndromes predisposing to osteosarcoma. Adv. Anat. Pathol. 25, 217–222 (2018).

Article  Google Scholar 

Calvert, G. T. et al. At-risk populations for osteosarcoma: the syndromes and beyond. Sarcoma 2012, 152382 (2012).

Article  Google Scholar 

Mirabello, L. et al. Height at diagnosis and birth-weight as risk factors for osteosarcoma. Cancer Causes Control 22, 899–908 (2011).

Article  Google Scholar 

Tucker, M. A. et al. Bone sarcomas linked to radiotherapy and chemotherapy in children. N. Engl. J. Med. 317, 588–593 (1987).

Article  CAS  Google Scholar 

Cundy, T. Paget’s disease of bone. Metabolism 80, 5–14 (2018).

Article  CAS  Google Scholar 

Ruggieri, P., Sim, F. H., Bond, J. R. & Krishnan Unni, K. Malignancies in fibrous dysplasia. Cancer 73, 1411–1424 (1994).

Article  CAS  Google Scholar 

Picci, P. et al. Late sarcoma development after curettage and bone grafting of benign bone tumors. Eur. J. Radiol. 77, 19–25 (2011).

Article  Google Scholar 

Jones, K. B. Osteosarcomagenesis: modeling cancer initiation in the mouse. Sarcoma 2011, 694136 (2011).

Article  Google Scholar 

Mutsaers, A. J. & Walkley, C. R. Cells of origin in osteosarcoma: mesenchymal stem cells or osteoblast committed cells? Bone 62, 56–63 (2014).

Article  Google Scholar 

Lin, Y. H. et al. Osteosarcoma: molecular pathogenesis and iPSC modeling. Trends Mol. Med. 23, 737–755 (2017).

Article  CAS  Google Scholar 

Cortés-Ciriano, I. et al. Comprehensive analysis of chromothripsis in 2,658 human cancers using whole-genome sequencing. Nat. Genet. 52, 331–341 (2020).

Article  Google Scholar 

Chen, X. et al. Recurrent somatic structural variations contribute to tumorigenesis in pediatric osteosarcoma. Cell Rep. 7, 104–112 (2014). The majority of TP53 loss in osteosarcoma occurs through intron 1 rearrangements or deletions rather than through point mutations.

Article  CAS  Google Scholar 

Perry, J. A. et al. Complementary genomic approaches highlight the PI3K/mTOR pathway as a common vulnerability in osteosarcoma. Proc. Natl Acad. Sci. USA 111, E5564–E5573 (2014).

Article  CAS  Google Scholar 

Sayles, L. C. et al. Genome-informed targeted therapy for osteosarcoma. Cancer Discov. 9, 46–63 (2019). A study that defines potentially actionable molecular subtypes of osteosarcoma.

Article  CAS  Google Scholar 

Wu, C. C. et al. Immuno-genomic landscape of osteosarcoma. Nat. Commun. 11, 1008 (2020). Molecular profiling of samples from patients with osteosarcoma characterizes immune subsets, including immune enrichment among older patients.

Article  CAS  Google Scholar 

Rajan, S. et al. Remarkably stable copy-number profiles in osteosarcoma revealed using single-cell DNA sequencing. Preprint at bioRxiv https://doi.org/10.1101/2021.08.30.458268 (2021).

Article  Google Scholar 

Behjati, S. et al. Recurrent mutation of IGF signalling genes and distinct patterns of genomic rearrangement in osteosarcoma. Nat. Commun. 8, 15936 (2017).

Article  CAS  Google Scholar 

Overholtzer, M. et al. The presence of p53 mutations in human osteosarcomas correlates with high levels of genomic instability. Proc. Natl Acad. Sci. USA 100, 11547–11552 (2003). One of the first studies to show that p53 mutations correlate with high levels of genomic instability in osteosarcomas.

Article  CAS  Google Scholar 

Eischen, C. M. Genome stability requires p53. Cold Spring Harb. Perspect. Med. 6, a026096 (2016).

Article  Google Scholar 

Hanel, W. & Moll, U. M. Links between mutant p53 and genomic instability. J. Cell. Biochem. 113, 433–439 (2012).

Article  CAS  Google Scholar 

Gerstung, M. et al. The evolutionary history of 2,658 cancers. Nature 578, 122–128 (2020).

Article  CAS  Google Scholar 

Lawlor, R. T. et al. Alternative lengthening of telomeres (ALT) influences survival in soft tissue sarcomas: a systematic review with meta-analysis. BMC Cancer 19, 232 (2019).

Article  Google Scholar 

Kovac, M. et al. Exome sequencing of osteosarcoma reveals mutation signatures reminiscent of BRCA deficiency. Nat. Commun. 6, 8940 (2015).

Article  CAS  Google Scholar 

Tellez-Gabriel, M. et al. Analysis of gap junctional intercellular communications using a dielectrophoresis-based microchip. Eur. J. Cell Biol. 96, 110–118 (2017).

Article  CAS  Google Scholar 

Bénédicte Brounais, L.-R. & Frédéric, L. In Bone Cancer 221–239, Ch. 18 (Academic Press, 2022).

Lan, M. et al. Extracellular vesicles-mediated signaling in the osteosarcoma microenvironment: roles and potential therapeutic targets. J. Bone Oncol. 12, 101–104 (2018).

Article  Google Scholar 

Cackowski, F. C. et al. Osteoclasts are important for bone angiogenesis. Blood 115, 140–149 (2010).

Article  CAS  Google Scholar 

Endo-Munoz, L., Evdokiou, A. & Saunders, N. A. The role of osteoclasts and tumour-associated macrophages in osteosarcoma metastasis. Biochim. Biophys. Acta 1826, 434–442 (2012).

CAS  Google Scholar 

Khanna, C. et al. Toward a drug development path that targets metastatic progression in osteosarcoma. Clin. Cancer Res. 20, 4200–4209 (2014).

Article  Google Scholar 

Heymann, M.-F., Lézot, F. & Heymann, D. The contribution of immune infiltrates and the local microenvironment in the pathogenesis of osteosarcoma. Cell. Immunol. https://doi.org/10.1016/j.cellimm.2017.10.011 (2017).

Article 

留言 (0)

沒有登入
gif