Neural similarity across task load relates to cognitive reserve and brain maintenance measures on the Letter Sternberg task: a longitudinal study

Altamura, M., Elvevåg, B., Blasi, G., Bertolino, A., Callicott, J. H., Weinberger, D. R., & Goldberg, T. E. (2007). Dissociating the effects of Sternberg working memory demands in prefrontal cortex. Psychiatry Research: Neuroimaging, 154(2), 103–114.

Google Scholar 

Andersson, J. L., Jenkinson, M., & Smith, S. (2007). Non-linear registration, aka Spatial normalisation FMRIB technical report TR07JA2. FMRIB Analysis Group of the University of Oxford, 2(1), e21.

Atkinson, A. L., Baddeley, A. D., & Allen, R. J. (2018). Remember some or remember all? Ageing and strategy effects in visual working memory. Quarterly Journal of Experimental Psychology, 71(7), 1561–1573.

Google Scholar 

Baddeley, A. (1992). Working memory. Science, 255(5044), 556–559.

CAS  Google Scholar 

Baddeley, A. (2012). Working memory: theories, models, and controversies. Annual Review of Psychology, 63, 1–29.

Google Scholar 

Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502–509.

Google Scholar 

Bauer, E., Sammer, G., & Toepper, M. (2015). Trying to put the puzzle together: Age and performance level modulate the neural response to increasing task load within left rostral prefrontal cortex. BioMed Research International, 415458. https://doi.org/10.1155/2015/415458

Bedwell, J. S., Horner, M. D., Yamanaka, K., Li, X., Myrick, H., Nahas, Z., & George, M. S. (2005). Functional neuroanatomy of subcomponent cognitive processes involved in verbal working memory. International Journal of Neuroscience, 115(7), 1017–1032.

Google Scholar 

Bergmann, J., Genç, E., Kohler, A., Singer, W., & Pearson, J. (2016). Neural anatomy of primary visual cortex limits visual working memory. Cerebral Cortex, 26(1), 43–50.

Google Scholar 

Bopp, K. L., & Verhaeghen, P. (2005). Aging and verbal memory span: A meta-analysis. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(5), P223–P233.

Google Scholar 

Brockmole, J. R., & Logie, R. H. (2013). Age-related change in visual working memory: A study of 55,753 participants aged 8–75. Frontiers in Psychology, 4, 12.

Google Scholar 

Bunge, S. A., Ochsner, K. N., Desmond, J. E., Glover, G. H., & Gabrieli, J. D. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124(10), 2074–2086.

CAS  Google Scholar 

Burzynska, A. Z., Nagel, I. E., Preuschhof, C., Li, S. C., Lindenberger, U., Bäckman, L., & Heekeren, H. R. (2011). Microstructure of frontoparietal connections predicts cortical responsivity and working memory performance. Cerebral Cortex, 21(10), 2261–2271.

CAS  Google Scholar 

Cairo, T. A., Liddle, P. F., Woodward, T. S., & Ngan, E. T. (2004). The influence of working memory load on phase specific patterns of cortical activity. Cognitive Brain Research, 21(3), 377–387.

Google Scholar 

Cansino, S., Hernández-Ramos, E., Estrada-Manilla, C., Torres-Trejo, F., Martínez-Galindo, J. G., Ayala-Hernández, M., & Rodríguez-Ortiz, M. D. (2013). The decline of verbal and visuospatial working memory across the adult life span. Age, 35(6), 2283–2302.

Google Scholar 

Cavanna, A. E., & Trimble, M. R. (2006). The precuneus: a review of its functional anatomy and behavioural correlates. Brain, 129(3), 564–583.

Google Scholar 

Curtis, C. E., & D’Esposito, M. (2003). Persistent activity in the prefrontal cortex during working memory. Trends in Cognitive Sciences, 7(9), 415–423.

Google Scholar 

D’Esposito, M., & Postle, B. R. (2015). The cognitive neuroscience of working memory. Annual Review of Psychology, 66, 115–142.

Google Scholar 

Dale, A. M., Fischl, B., & Sereno, M. I. (1999). Cortical surface-based analysis: I. Segmentation and surface reconstruction. NeuroImage, 9(2), 179–194.

CAS  Google Scholar 

Deen, B., Koldewyn, K., Kanwisher, N., & Saxe, R. (2015). Functional organization of social perception and cognition in the superior temporal sulcus. Cerebral Cortex, 25(11), 4596–4609.

Google Scholar 

Desikan, R. S., Ségonne, F., Fischl, B., Quinn, B. T., Dickerson, B. C., Blacker, D., & Killiany, R. J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage, 31(3), 968–980.

Google Scholar 

Dominguez, E. N., Stark, S. M., Ren, Y., Corrada, M. M., Kawas, C. H., & Stark, C. E. (2021). Regional cortical thickness predicts top cognitive performance in the elderly. Frontiers in Aging Neuroscience, 758. https://doi.org/10.3389/fnagi.2021.751375

Dunst, B., Benedek, M., Jauk, E., Bergner, S., Koschutnig, K., Sommer, M., & Neubauer, A. C. (2014). Neural efficiency as a function of task demands. Intelligence, 42, 22–30.

Google Scholar 

Ebaid, D., Crewther, S. G., MacCalman, K., Brown, A., & Crewther, D. P. (2017). Cognitive processing speed across the lifespan: beyond the influence of motor speed. Frontiers in Aging Neuroscience, 9, 62.

Google Scholar 

Ecker, U. K., Lewandowsky, S., Oberauer, K., & Chee, A. E. (2010). The components of working memory updating: An experimental decomposition and individual differences. Journal of Experimental Psychology: Learning Memory and Cognition, 36(1), 170.

Google Scholar 

Elmer, S. (2016). Broca pars triangularis constitutes a “hub” of the language-control network during simultaneous language translation. Frontiers in Human Neuroscience, 10, 491.

Google Scholar 

Emch, M., Von Bastian, C. C., & Koch, K. (2019). Neural correlates of verbal working memory: An fMRI meta-analysis. Frontiers in Human Neuroscience, 13, 180.

Google Scholar 

Fakhri, M., Sikaroodi, H., Maleki, F., Ghanaati, H., & Oghabian, M. A. (2013). Impacts of normal aging on different working memory tasks: Implications from an fMRI study. Behavioural Neurology, 27(3), 235–244.

Google Scholar 

Fjell, A. M., Grydeland, H., Krogsrud, S. K., Amlien, I., Rohani, D. A., Ferschmann, L., & Walhovd, K. B. (2015). Development and aging of cortical thickness correspond to genetic organization patterns. Proceedings of the National Academy of Sciences, 112(50), 15462–15467.

Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., & Walhovd, K. B. (2009). High consistency of regional cortical thinning in aging across multiple samples. Cerebral Cortex, 19(9), 2001–2012.

Google Scholar 

Fleischman, D. A., Arfanakis, K., Kelly, J. F., Rajendran, N., Buchman, A. S., Morris, M. C., & Bennett, D. A. (2010). Regional cortical thinning and systemic inflammation in older persons without dementia. Journal of the American Geriatrics Society, 58(9), 1823.

Google Scholar 

Funahashi, S. (2017). Working memory in the prefrontal cortex. Brain Sciences, 7(5), 49.

Google Scholar 

Glahn, D. C., Kim, J., Cohen, M. S., Poutanen, V. P., Therman, S., Bava, S., & Cannon, T. D. (2002). Maintenance and manipulation in spatial working memory: dissociations in the prefrontal cortex. NeuroImage, 17(1), 201–213.

CAS  Google Scholar 

Habeck, C., Rakitin, B. C., Moeller, J., Scarmeas, N., Zarahn, E., Brown, T., & Stern, Y. (2005). An event-related fMRI study of the neural networks underlying the encoding, maintenance, and retrieval phase in a delayed-match-to-sample task. Cognitive Brain Research, 23(2–3), 207–220.

Google Scholar 

Hale, S., Rose, N. S., Myerson, J., Strube, M. J., Sommers, M., Tye-Murray, N., & Spehar, B. (2011). The structure of working memory abilities across the adult life span. Psychology and Aging, 26(1), 92–110.

Google Scholar 

Hartwigsen, G., Baumgaertner, A., Price, C. J., Koehnke, M., Ulmer, S., & Siebner, H. R. (2010). Phonological decisions require both the left and right supramarginal gyri. Proceedings of the National Academy of Sciences, 107(38), 16494–16499.

Kennedy, K. M., Boylan, M. A., Rieck, J. R., Foster, C. M., & Rodrigue, K. M. (2017). Dynamic range in BOLD modulation: Lifespan aging trajectories and association with performance. Neurobiology of Aging, 60, 153–163.

CAS  Google Scholar 

Kim, H. (2019). Neural activity during working memory encoding, maintenance, and retrieval: A network-based model and meta‐analysis. Human Brain Mapping, 40(17), 4912–4933.

Google Scholar 

Koen, J. D., & Rugg, M. D. (2019). Neural dedifferentiation in the aging brain. Trends in Cognitive Sciences, 23(7), 547–559.

Google Scholar 

Kragel, J. E., Ezzyat, Y., Sperling, M. R., Gorniak, R., Worrell, G. A., & Berry, B. M., & Kahana, M. J. (2017). Similar patterns of neural activity predict memory function during encoding and retrieval. NeuroImage, 155, 60–71.

Kumar, N., & Priyadarshi, B. (2013). Differential effect of aging on verbal and visuo-spatial working memory. Aging and Disease, 4(4), 170.

Google Scholar 

Lejbak, L., Crossley, M., & Vrbancic, M. (2011). A male advantage for spatial and object but not verbal working memory using the n-back task. Brain and Cognition, 76(1), 191–196.

Google Scholar 

Maillet, D., & Rajah, M. N. (2013). Association between prefrontal activity and volume change in prefrontal and medial temporal lobes in aging and dementia: a review. Ageing Research Reviews, 12(2), 479–489.

Google Scholar 

Mattis S (1988) Dementia Rating Scale. Professional manual. Psychological Assessment Resourses, Odessa

Morcom, A. M., & Henson, R. N. (2018). Increased prefrontal activity with aging reflects nonspecific neural responses rather than compensation. Journal of Neuroscience, 38(33), 7303–7313.

CAS  Google Scholar 

Nee, D. E., Brown, J. W., Askren, M. K., Berman, M. G., Demiralp, E., Krawitz, A., & Jonides, J. (2013). A meta-analysis of executive components of working memory. Cerebral Cortex, 23(2), 264–282.

Google Scholar 

Nussbaumer, D., Grabner, R. H., & Stern, E. (2015). Neural efficiency in working memory tasks: The impact of task demand. Intelligence, 50, 196–208.

Google Scholar 

Oldfield RC (1971) The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9(1), 97–113. https://doi.org/10.1016/0028-3932(71)90067-4

Park, D. C., Lautenschlager, G., Hedden, T., Davidson, N. S., Smith, A. D., & Smith, P. K. (2002). Models of visuospatial and verbal memory across the adult life span. Psychology and Aging, 17(2), 299.

Google Scholar 

Pliatsikas, C., Veríssimo, J., Babcock, L., Pullman, M. Y., Glei, D. A., Weinstein, M., & Ullman, M. T. (2019). Working memory in older adults declines with age, but is modulated by sex and education. Quarterly Journal of Experimental Psychology, 72(6), 1308–1327.

Google Scholar 

Rajah, M. N., & D’Esposito, M. (2005). Region-specific changes in prefrontal function with age: A review of PET and fMRI studies on working and episodic memory. Brain: A Journal of Neurology, 128(9), 1964–1983.

Google Scholar 

Reed, J. L., Gallagher, N. M., Sullivan, M., Callicott, J. H., & Green, A. E. (2017). Sex differences in verbal working memory performance emerge at very high loads of common neuroimaging tasks. Brain and Cognition, 113, 56–64.

Google Scholar 

Reuter, M., Schmansky, N. J., Rosas, H. D., & Fischl, B. (2012). Within-subject template estimation for unbiased longitudinal image analysis. NeuroImage, 61(4), 1402–1418.

Google Scholar 

Reuter, M., Rosas, H. D., & Fischl, B. (2010). Highly accurate inverse consistent registration: a robust approach. NeuroImage, 53(4), 1181–1196.

Google Scholar 

Reuter-Lorenz, P. A., & Cappell, K. A. (2008). Neurocognitive aging and the compensation hypothesis. Current Directions in Psychological Science, 17(3), 177–182.

Google Scholar 

Reuter-Lorenz, P. A., & Sylvester, C. Y. (2005). The cognitive neuroscience of aging and working memory. In R. Cabeza, L. Nyberg, & D. Park (Eds.), The cognitive neuroscience of aging (pp. 186–217). Oxford University Press.

Google Scholar 

Rypma B, D’Esposito M (1999) The roles of prefrontal brain regions in components of working memory: Effects of memory load and individual differences. Proceedings of the National Academy of Sciences, 96(11), 6558–6563. https://doi.org/10.1073/pnas.96.11.6558

Rypma, B., Berger, J. S., Prabhakaran, V., Bly, B. M., Kimberg, D. Y., Biswal, B. B., & Esposito, D. (2006). Neural correlates of cognitive efficiency. NeuroImage, 33(3), 969–979.

Google Scholar 

Rypma, B., Berger, J. S., & D’esposito, M. (2002). The influence of working-memory demand and subject performance on prefrontal cortical activity. Journal of Cognitive Neuroscience, 14(5), 721–731.

Google Scholar 

Sambataro, F., Murty, V. P., Callicott, J. H., Tan, H. Y., Das, S., Weinberger, D. R., & Mattay, V. S. (2010). Age-related alterations in default mode network: impact on working memory performance. Neurobiology of Aging, 31(5), 839–852.

Google Scholar 

Schneider-Garces, N. J., Gordon, B. A., Brumback-Peltz, C. R., Shin, E., Lee, Y., Sutton, B. P., & Fabiani, M. (2010). Span, CRUNCH, and beyond: working memory capacity and the aging brain. Journal of Cognitive Neuroscience, 22(4), 655–669.

Google Scholar 

Sele, S., Liem, F., Mérillat, S., & Jäncke, L. (2021). Age-related decline in the brain: A longitudinal study on inter-individual variability of cortical thickness, area, volume, and cognition. Neuroimage, 240.

Speck, O., Ernst, T., Braun, J., Koch, C., Miller, E., & Chang, L. (2000). Gender differences in the functional organization of the brain for working memory. NeuroReport, 11(11), 2581–2585.

CAS  Google Scholar 

Stern, Y., Arenaza-Urquijo, E. M., Bartrés‐Faz, D., Belleville, S., Cantilon, M., Chetelat, G., & Reserve (2020). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimer’s & Dementia, 16(9), 1305–1311. Resilience and Protective Factors PIA Empirical Definitions and Conceptual Frameworks Workgroup.

Sternberg, S. (1966). High-speed scanning in human memory. Science, 153(3736), 652–654.

CAS  Google Scholar 

Storsve, A. B., Fjell, A. M., Tamnes, C. K., Westlye, L. T., Overbye, K., Aasland, H. W., & Walhovd, K. B. (2014). Differential longitudinal changes in cortical thickness, surface area and volume across the adult life span: regions of accelerating and decelerating change. Journal of Neuroscience, 34(25), 8488–8498.

CAS  Google Scholar 

Suzuki, M., Kawagoe, T., Nishiguchi, S., Abe, N., Otsuka, Y., Nakai, R., & Sekiyama, K. (2018). Neural correlates of working memory maintenance in advanced aging: evidence from fMRI. Frontiers in Aging Neuroscience, 10, 358. https://doi.org/10.3389/fnagi.2018.00358

Toepper, M., Gebhardt, H., Bauer, E., Haberkamp, A., Beblo, T., Gallhofer, B., & Sammer, G. (2014). The impact of age on load-related dorsolateral prefrontal cortex activation. Frontiers in Aging Neuroscience, 6, 9.

Google Scholar 

Tucker, A., & Stern, Y. (2011). Cognitive reserve in aging. Current Alzheimer Research, 8(4), 354–360.

CAS  Google Scholar 

留言 (0)

沒有登入
gif