Immunohistochemical Characterization of Gingival Fibromas

Rossmann JA. Reactive Lesions of the Gingiva: Diagnosis and Treatment Options. Open Pathol J Bentham Science Publishers Ltd. 2011;5:23–32.

Google Scholar 

Buchner A, Shnaiderman-Shapiro A, Vered M. Relative frequency of localized reactive hyperplastic lesions of the gingiva: a retrospective study of 1675 cases from Israel. J Oral Pathol Med. 2010;39:631–8. Available from: https://pubmed.ncbi.nlm.nih.gov/20456619/.

Hunasgi S, Koneru A, Vanishree M, Manvikar V. Assessment of reactive gingival lesions of oral cavity: A histopathological study. J Oral Maxillofac Pathol. 2017;21:180. Available from: http://www.ncbi.nlm.nih.gov/pubmed/28479713.

Buchner A, Hansen LS. The histomorphologic spectrum of peripheral ossifying fibroma. Oral Surg Oral Med Oral Pathol. 1987;63:452–61. Available from: https://pubmed.ncbi.nlm.nih.gov/3472146/.

Ganatra S, Summerlin D-J, Zunt S, Abdelsayed R. The Gingival Fibroma: A Distinct Clinicopathologic Entity. Oral Surg Oral Med Oral Pathol. Oral Radiol. 1999. p. 202.

Bawazir M, Islam MN, Cohen DM, Fitzpatrick S, Bhattacharyya I. Gingival Fibroma: An Emerging Distinct Gingival Lesion with Well-Defined Histopathology. Head Neck Pathol; 2021;15:917–22. Available from: http://www.ncbi.nlm.nih.gov/pubmed/33686583.

Baněčková M, Agaimy A. SATB2 is frequently expressed in ossifying and non-ossifying peripheral oral fibroma of the gingival region but not in reactive fibromatous lesions from other intraoral sites. Ann Diagn Pathol. 2020;46:151510. Available from: https://pubmed.ncbi.nlm.nih.gov/32252013/.

Mergoni G, Meleti M, Magnolo S, Giovannacci I, Corcione L, Vescovi P. Peripheral ossifying fibroma: A clinicopathologic study of 27 cases and review of the literature with emphasis on histomorphologic features. J Indian Soc Periodontol. 2015;19:83–7. Available from: http://www.ncbi.nlm.nih.gov/pubmed/25810599.

Ordóñez NG. SATB2 is a novel marker of osteoblastic differentiation and colorectal adenocarcinoma. Adv Anat Pathol. 2014;21:63–7.

Article  Google Scholar 

Huang W, Yang S, Shao J, Li YP. Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci. 2007;12:3068–92. Available from: https://pubmed.ncbi.nlm.nih.gov/17485283/.

Ducy P, Desbois C, Boyce B, Pinero G, Story B, Dunstan C, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382:448–52.

Article  Google Scholar 

Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G. Transforming growth factor-β1 induces α-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol. 1993;122:103–11.

Article  Google Scholar 

Damasceno LS, Gonçalves FDS, Silva ECE, Zenóbio EG, Souza PEA, Horta MCR. Stromal myofibroblasts in focal reactive overgrowths of the gingiva. Braz Oral Res. 2012;26:373–7.

Article  Google Scholar 

Epivatianos A, Andreadis D, Iordanidis S. Myofibroblasts and transforming growth factor-beta1 in reactive gingival overgrowths. J oral Maxillofac Res. 2013;4:e3. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24422026.

Rao K, Malathi N, Narashiman S, Rajan S. Evaluation of myofibroblasts by expression of alpha smooth muscle actin: a marker in fibrosis, dysplasia and carcinoma. J Clin Diagn Res. 2014;8(4):ZC14-7. doi: https://doi.org/10.7860/JCDR/2014/7820.4231. PMID: 24959509.

Conway SJ, Izuhara K, Kudo Y, Litvin J, Markwald R, Ouyang G, et al. The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci. 2014;71:1279–88.

Article  Google Scholar 

Norris R, Damon B, Mironov V, Kasyanov V, Ramamurthi A, Moreno-Rodriguez R, et al. Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem. 2007;101:695–711. Available from: https://pubmed.ncbi.nlm.nih.gov/17226767/.

Cobo T, Obaya A, Cal S, Solares L, Cabo R, Vega JA, et al. Immunohistochemical localization of periostin in human gingiva. Eur J Histochem. 2015;59:207–10.

Article  Google Scholar 

Lu EMC, Hobbs C, Dyer C, Ghuman M, Hughes FJ. Differential regulation of epithelial growth by gingival and periodontal fibroblasts in vitro. J Periodontal Res. 2020;55:859–67.

Article  Google Scholar 

Kim SS, Nikoloudaki G, Darling M, Rieder MJ, Hamilton DW. Phenytoin activates smad3 phosphorylation and periostin expression in drug-induced gingival enlargement. Histol Histopathol. 2018;33(12):1287–98. doi:https://doi.org/10.14670/HH-18-015.

Article  Google Scholar 

Kim SS, Jackson-Boeters L, Darling MR, Rieder MJ, Hamilton DW. Nifedipine induces periostin expression in gingival fibroblasts through TGF-beta. J Dent Res. 2013;92(11):1022–8. doi:https://doi.org/10.1177/0022034513503659.

Article  Google Scholar 

Nikoloudaki G, Creber K, Hamilton DW. Wound healing and fibrosis: A contrasting role for periostin in skin and the oral mucosa. Am J Physiol - Cell Physiol. 2020;318(6):C1065–77. doi:https://doi.org/10.1152/ajpcell.00035.2020.

Article  Google Scholar 

Lázare H, Peteiro A, Pérez Sayáns M, Gándara-Vila P, Caneiro J, García-García A, et al. Clinicopathological features of peripheral ossifying fibroma in a series of 41 patients. Br J Oral Maxillofac Surg. 2019;57:1081–5.

Article  Google Scholar 

Bankhead P, Loughrey MB, Fernández JA, Dombrowski Y, McArt DG, Dunne PD, et al. QuPath: Open source software for digital pathology image analysis. Sci Rep. Nature Publishing Group; 2017;7.

Carnes DL, Maeder CL, Graves DT. Cells With Osteoblastic Phenotypes Can Be Explanted From Human Gingiva and Periodontal Ligament. J Periodontol. 1997;68:701–7.

Article  Google Scholar 

Nojima N, Kobayashi M, Shionome M, Takahashi N, Suda T, Hasegawa K. Fibroblastic cells derived from bovine periodontal ligaments have the phenotypes of osteoblasts. J Periodontal Res. 1990;25:179–85.

Article  Google Scholar 

留言 (0)

沒有登入
gif